
£5

By Seth Eliot

The future of testing cannot be
covered in a mere three parts.
But a look at software and the
industry indicates that the three
areas covered in this series
may be a good first place to
start. To review:

•	 Part 1 (The Testing Planet,
October 2011) - Testing in
Production (TiP) - Leverag-
ing real users and live envi-
ronments to test software.

•	 Part 2 (The Testing Planet,
March 2012) - TestOps -
Live site focus for testers,
merging aspects of the
Development, Operations,
and Testing roles.

Now we arrive at Part 3 -
The Cloud.

The Cloud -
A Very Brief Introduction

“The cloud is a self-service
on demand way of accessing
computation resources with a
virtualized abstraction.... it’s a
public service... you can treat
it as a utility” - Ray Ozzie, for-
mer Chief Software Architect,
Microsoft1

	 It’s a utility. You pay
for what you use. When you
are using nothing, you pay
nothing. This is “the power

Continued on page 4

By Matthew Heusser

I know what you are thinking. “Oh look,
an article on Lean. Yes, yet another
concept borrowed from an entirely
different industry, from a different
time in history, that has nothing to do

with Software Development. Joy.”
That statement is best read as intended,
dripping with sarcasm.
	 Wait! Stifle that yawn! Don’t
flip that page yet! If you haven’t heard
of lean, sooner or later, it is likely that
you will. Some manager, consultant,

or expert is going to ask you how your
ideas line up with lean thinking.
	 Wouldn’t it be nice to have an
answer? A serious answer. A sincere
answer. The folks at The Testing Planet

Continued on page 2

ALSO IN THE NEWS

LEARNING FROM
CYBERNETICS
The word ’cybernetics’
comes from the Greek
word Κυβερνήτης...
Continued on page 6

Continuous
integration
If you want to be lean,
get to the point. Software
quality is often as much...
Continued on page 22

The future
of Software
Testing (Part 3)
The Cloud

Think you’re funny, do you?
WIN!

HOW LEAN IS
YOUR TESTING?
Lean software
development is gaining
support but how does...
Continued on page 16

Leaning up software testing

July 2012 | www.thetestingplanet.com | No: 8

Show us what you’re made of by entering our cartoon caption competition - find out more on page 10

Your Software Test Team could be Just like This Guy! Or something. It’s a metaphor, get it?

THE EVIL TESTER
QUESTION TIME
More provocative advice
for testers who don’t
know what to do!
Continued on page 24

www.softwaretestingclub.com

2 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Welcome to the Lean issue! I wrote
a blog-post on The Testing Planet
site a couple of months ago now,

to the effect that I was inspired by the lean
principles we would be majoring on in the
July Testing Planet. That’s still the case,
but I’ve realised it’s not enough to just be
inspired. Lean thinking needs to become
a part of my DNA; a catalyst for improve-
ments in the design and delivery of my test
projects day-in and day-out.
	 These are austere times we’re living
in. Your organisation is probably already
giving some serious thought in regards to
where and how project lifecycles can be
delivered faster with less waste. Testing has
historically been something of a bottleneck,
but improvements to test processes are, to
a greater or lesser degree, directly under
your control.
	 Is your manual testing finely honed
like a surgical scalpel, or more like a rusty
saw? Are you hooked right into the full
development lifecycle of your project, iden-
tifying problems and recommending solu-
tions from the product’s inception? Is your
test design and execution just-in-time, able
to respond and adapt quickly to change, or
are you spending days or weeks refactoring
scripts every time product requirements
change?
	 For many of us, it’s time to take a
step back and consider where and how lean
principles can be applied. You’ll find some
exceptional thinking on the following pages.
Just make sure you implement some of them!

Letter from the Editor

Simon Knight

KK

Main story continued from page 1

 thought it was a reasonable request.
	 The result of all this work is the article in
your hands. My goal is to inform and entertain,
but mostly, I want to honour your investment of
time. So let’s get on with it and talk about lean
testing, shall we?

The first word: Lean

The term ‘Lean’ was first used by two Americans,
James Womack and Daniel Jones, in their book
The Machine That Changed the World. In the book
they link together a series of innovations in process
and thinking that the Japanese used to, well, eat the
lunch of American Car Companies.
	 It’s a good story; it is a compelling
story. It is tempting to over-simplify the story into
Lean=Eating America’s Lunch and “succeed by
following the rules in this checklist”. The real story
is a bit more complex.
	 Let’s start with where the myth went
wrong - that Lean has its roots in American history,
because Henry Ford invented the assembly line.
	 The Assembly line was a major innovation
for its day, and the Japanese did, indeed, visit,
take notes, go home, and make very productive
factories. But that’s not what I mean when I say
lean - it is not a series of techniques!
	 As the founders of lean continued to visit
American plants over a series of years1, they
saw one thing in particular: American plants had
problems, and they were not being fixed. This is
likely because of the American focus on stable,
predictable and repeatable plant operations. If
you standardise on it, yes, you can experiment
and measure results, sure, but you have to actually
try different things! Organisations that focus
exclusively on standardisation, well, are not trying
different things.
	 If I had to pick a first pillar of lean to stand
on, it would be just that: Continuous Improvement.
That’s a tricky word, continuous improvement.
Changes on software projects are more like
tradeoffs, where to get something; you have to give
something up, aren’t they? Or, as Eric Sink, the
CEO of SourceGear Corporation once put it “You
can’t eliminate problems, but you can make trades
to get the problems that you prefer over the ones
you have now.”
	 The rest of the article is going to try to help
you figure out what improvement means for you.

To Get Lean, Drive out Waste

When the Japanese were looking at how to design
their factories, they saw one big area that could be
improved: Waste. Real waste; actual physical piles
of parts that were rejected that had to be thrown
away - metal that was bought, paid for, put through
a process and then hauled away by a trucking firm.
(That charged an additional fee). Beyond the scrap,
they also saw time spent on fixing broken parts
(“re-work”). This fixing meant the company paid
labour to build two parts, but only got one.
	 In addition to the scrap and re-work, there
was waste in employee time. Americans were

using a kind of accounting called cost accounting
that counted things like the cost to produce a part
based on the hourly rate of the man driving the
machine. This meant that if you lined up 1,000
parts in a press and the batch only took a few
minutes to run, your price per part was extremely
low. It also totally fails to consider setup and tear
down time, and the time the workers are sitting idle
at the next step in the process, waiting for those
1,000 parts to be lined up and fired. We’re out of
space here, but Eli Goldratt’s “The Goal” has an
excellent, detailed explanation of this problem. The
subtitle of “The Goal” is “A process of continuous
improvement.” You’ll like it.
	 The Japanese term for this waste is Muda, a
word that loosely translates to ... well ... waste. On
the Toyota Production System (TPS), a way of
mass-producing cars on demand, was designed with
this as a primary thought: Continually Improve by
Driving out Waste.

The How of Lean Manufacturing

Implementing lean manufacturing is hard to explain
- doubly hard in one article. Triply hard when I get
about a third of the article to explain the concept -
but here goes the short version.
	 When the folks at Toyota wanted to
improve performance and drive out waste, they
looked at the problem domain, and designed a
system that would produce automobiles at the rate
of demand. This is very important; the system
they chose fitted the problem. Most of us are not
building automobiles, and production is a solved
problem; it is a Copy/Paste or File > Save As. Our
issue is not production, but we can look at those
ideas for inspiration. This point bears repeating.
	 I belong to something called the Context-
Driven School of Software Testing, which goes so
far as to claim that There are No Best Practices;
that practices are instead better or worse in a given
context. The Toyota Production System (TPS) solves
a problem, but you may not have that problem. And,
as Mr. Sink pointed out so well, adopting one solution
may create problems bigger than what it solves!
	 Now the Americans who took TPS and
turned it into Lean did create a set of techniques,
and these make sense, and many apply in a software
organization. Allow me to ‘hit the highlights’:
	 The Present State (“Before”): Imagine
having a plant that did all of its work at each stage,
then moved all the work to the next, then the next,
until the parts go out the door. While one action is
taking place somewhere in the plant, everyone is
idle. This is bad. Ironically, it also sounds a lot like
the waterfall development process.
	 The Future State (“After”): The opposite of
this stops-and-jerks big-batch-size approach is smaller
batches, then smaller still, until you have one-piece
flow, in which each individual piece flows throughout a
system. This means the folks next in line can get a part
as soon as possible. The basic goal of TPS is to achieve
flow, and to do it by eliminating these seven muda:

•	 Transport (moving products that are not
actually required to perform the processing)

Continued on page 3

Rosie Sherry
Thomas Harvey
Stephen Hill
Mike Talks

David Greenlees
Pete Walen
Catherine Powell

The team

Real Examples of Bad Bug Reports - http://bit.ly/badbugsreports
Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/badbugsreports

3Follow us at www.twitter.com/testingclub

Continued from page 2

•	 Inventory (all components, work in
process2 and finished product not being
processed)

•	 Motion (people or equipment moving or
walking more than is required to perform the
processing)

•	 Waiting (waiting for the next production step)
•	 Overproduction (production ahead of demand)
•	 Over Processing (resulting from poor tool or

product design creating activity)
•	 Defects (the effort involved in inspecting for

and fixing defects)3

Lean in the IT Shop

Things are wildly different in a software
organization, and it is easy to get horribly confused.
For example, using “motion waste” as an excuse to
standardize where the stapler goes on every desk,
or force a “clean desk” policy where no papers
can remain anywhere, that is just ... sad. That
might have something to do with production on
an assembly line, but in software, we have more
important things to focus on.
	 When I say lean, that is not what I am
talking about. I do, however, see motion waste in
poor tooling, in waiting two days to provision a
test machine, in having to create a ticket in one
system, then cut/paste data from another, then hand
key data from a third into a fourth just to get the
permissions changed on a directory so you can run
a process. That kind of stuff is waste, it happens
all the time, and it won’t change without concerted
effort.
	 Likewise, some of the defects found
by testers are waste. I say some because the
companies I have worked with that tried to
eliminate defects – to prove the software correct in
one way or another - spent a huge amount of time,
energy and effort and still had bugs. That kind of
analysis paralysis is its own waste. Here’s part of
why: While Cleanroom methods4 have been studied
and work in certain cases, they tend to work only
if the company owns the entire solution, down to
the hardware. In an era when software developers
program on one browser and we have to support
twenty combinations of browsers and versions, each
with a different JavaScript interpreter, it is unlikely
that we will prevent all the defects.
	 While we might not prevent all defects, all
of the groups I have consulted with had opportunity
to improve the quality of the code before it gets
to test. That means less time spent reproducing,
documenting, triaging, and re-testing. It means the
code can be deployed to test more quickly.
	 Overproduction is another waste. Consider,
for example, the company that has five analysts,
who have ‘analyzed’ a year worth of projects, and
are ‘just waiting’ for the technical team to go and
code up the existing work.
	 Imagine those business requirement
documents not as files on a computer, but physical
sheets of paper in an inbox. That is a lot of work in
progress inventory.
	 Meanwhile, what are the analysts
doing? Working on the project your team might

work on twelve months from now.
	 Twelve months from now the company
priorities may not be the same. The technology
landscape will be the same; the team organisation
may change! We can start to see those new
business requirements as waste; the analysts would
be better off figuring how they could help test
and deploy the existing applications. That would
actually help improve time to market for the next
three years!
	 Seeing overproduction as waste moves
us toward just-in-time analysis. That means
that as soon as I, the tester, am overloaded, the
programmer can no longer push work onto me. If
he finishes his task, he needs to help me get my
existing tasks finished before assigning the next
one. That might mean creating automation tools,
doing some test automation, helping out with the
hands-on test effort, or running to the sandwich
shop to buy lunch. The point is to move from a
push system to a pull one, and the same rules apply
for the developer as do for the tester.

The second word: Testing

My description above focused on Software
Development, and that was on purpose; Lean is a
whole-process concept, that focuses on the entire
value delivery chain, what Mary Poppendieck refers
to as “concept to cash” in the book she co-wrote
with her husband, Tom, which has the non-ironic
title “Implementing Lean Software Development:
From Concept to Cash.”
	 Looking at Software from a Lean
perspective, we want to optimize throughput. That
means finding the bottlenecks and escalating them;
making them important and adding helps where
possible. If the bottleneck isn’t testing, but is
instead development, well, we can focus on that
first, maybe working on handoffs from developer to
tester. In this way, the term “Lean Software Test”
doesn’t make a huge amount of sense. And yet...
	 The teams I have worked with that
implemented the “push to pull” approach I
described above found some specific issues for
testing. Here are the four I recognize most readily:
	 Regression Testing - You might want to
deploy every minimum marketable feature as
soon as it is tested, in order to achieve one-piece
flow. Yet that feature is a part of a greater system,
and your new, tested feature might introduce a
defect somewhere else. So you want to regression
test the system, and trying to regression test the
entire application for each feature introduces a big,

huge bottleneck called “testing.”
	 Blowback - Everything goes great until a
tester finds a bug. Then the developers, who have a
work-in-progress limit set, suddenly have an extra
thing to work on. Switching from that extra thing
back to the story they thought was done causes
disruption; now the folks that wanted to work
on fleshing out the next story can’t because they
cannot ‘push’ the current story to dev. Meanwhile,
the testers are blocked, waiting for a build. As
an occasional thing, this happens (it sure happens
in traditional software development!) but a lot of
blowback can cause thrashing, which is a huge
danger to productivity.
	 Over Thinking the Factory Analogy -
Software is not a factory. Even if it were, modern
factory theory is nothing like the clichés of a
General Motors factory in the 1920’s that many
people think of when they hear the term. Over-
thinking the factory analogy can lead to treating
humans like cogs in some sort of machine and
sometimes the notion that testing is unskilled
manual labour and best (entirely) automated. I
am all for test automation, don’t get me wrong,
but what computers do when they run through
pre-recorded steps in a specific way, with pre-
defined inputs along a specific path leading to
certain expected outputs -- that is not what a good
tester does. Trying to automate that tends to lead
to comprehensive, but brittle tests that were very
expensive to create and maintain, or incomplete
automation that allows bugs slip through the net:
sometimes both.
	 Waste in Test Ideas - Some tests take a long
time to run, always return success, and test a feature
that, if broken, would not be a showstopper. If
they never ever give an error, there is a case to
be made that they are muda -- but that is sort of
like saying a car insurance policy is muda, isn’t
it? Deciding what tests can be skipped, when, why
and which tests must run, is a challenge for any test
organization, but it becomes more visible when the
organization has an aggressive “drive out waste”
policy.

The two words together: Lean (Software) Testing

Most organizations that I talk to that are adopting a
”Lean Software” approach take that approach to the
entire technical team. Testers are usually embedded
in the technical staff, reducing the time it takes to
walk over to a developer or product owner and ask

Continued on page 4

This article may have been written slightly tongue-in-cheek, but Matthew Heusser is a no joke.
A consulting software tester and self-described software process naturalist, who tests, man-
ages, and develops on software projects. Lately Matt has been coaching testers while contribut-
ing in short bursts - a sort of “Boutique Test Consulting” that actually leads to quicker time to
market right now, on this project right here. A contributing editor for Software Test & Quality
Assurance Magazine, Matt blogs at “Creative Chaos” sits on the Board of Directors of the As-
sociation for Software Testing, and recently served as lead editor for “How to Reduce the Cost
of Software Testing” (Taylor and Francis, 2011). You can follow Matt on twitter @mheusser or
email him matt@xndev.com or read more on his blog: http://xndev.com/creative-chaos

AUTHOR PROFILE - Matthew Heusser

Some great advice and discussion about learning Selenium - http://bit.ly/seleniumcourses
Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/seleniumcourses

4 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

To Gherkin or not to Gherkin? http://bit.ly/togherkin

Continued from page 3

a question. The organizations tend to remove layers
of management and bureaucracy, because time
spent routing documents and information is its own
form of muda. Testers think of themselves as part
of a greater product team, with a role of helping
to deliver software. Not just software, to software
with a purpose, or a value: Enabling a business
process, solving a problem, making something
of economic value that people are willing to pay
money for.
	 Most of the teams I have worked with drop
‘iterations’, limit work in progress to the number
of dev-pairs available at one time, encourage pair
programming, collaborating with testers, focus on
Mentions-In-Passing over formalized bug reports,
and measure cycle time (days it takes a story to
move from active work to deployed) and throughput
(number of stories accomplished per week.) The
metrics the team uses are whole-team metrics.
	 The teams also have to deal with a very
compressed regression-test window. They usually
expect testers to improve quality before the code
gets to test, to minimize blowback. Often the
developers automate examples they are given
before coding starts; testers work to help create
the examples up front. Once the software is ready

to ‘test’, the tester verifies the automated checks
are checking the right things, and then perform
exploratory testing. In order to tighten that window,
testers tend to get very good at exploratory testing
and evaluating risk. Companies with a large,
integrated set of applications tend to both develop a
test cadence, and deploy a small batch of features at
a time, or else enable quick deploys, intense system
monitoring, and a very big ‘rollback’ button in
production.
	 Now there are many reasonable
interpretations of ‘lean’. Most of these teams follow
the tradition culled by Womack and Jones from the
Japanese Manufacturing Revolution, interpreted
by two American Academics, and then interpreted
again by the Software Industry. Two most well
known camps are probably the work of Mary and
Tom Poppendieck5, and the Lean Systems Society6,
but the real heart of lean is continuous improvement
by driving out waste.
	 You may define improvement differently;
you may define waste differently. That’s okay. The
important thing is to take a systems thinking
approach and know what you stand for.

One Final Note

In my time in software, I’ve seen organizations that

build a pile of inventory in front of the technical
staff, and then yell at them for being the bottleneck,
while other people who could help stand idle, all
because this “isn’t my job.” If anything, lean testing
has the potential to explain that there is a better
way. In that, I rejoice.
	 If, after reading this article, you can too --
that you can understand these ideas, articulate them,
and even see how they could make a difference in
your organization, well, I will count that as victory
and exit stage left. The next step is up to you.

Good luck! □

REFERENCES

1.	 I am speaking of Eiji Toyoda and Taiichi Ohno
here, who studied under an American name W.
Edwards Deming.

2.	 http://en.wikipedia.org/wiki/Work_in_process
3.	 Seven Types of Muda as attributed to “Lean

Thinking”, Womack and Jones, 2003, from
Wikipedia http://en.wikipedia.org/wiki/Lean_
manufacturing

4.	 http://en.wikipedia.org/wiki/Cleanroom_
software_engineering

5.	 Lean Software Development: An Agile Toolkit
6.	 http://leansystemssociety.org/

Second story continued from page 1

of zero” to which I will refer back to. This is one
side of the coin of the key cloud feature of elastic-
ity - you can spin up as many resources as you need
or wind them down to save money when you do not
need them.2
	 The other key concept is abstraction. The
Cloud abstracts away what you do not care about so
you can concentrate on what you do care about.

•	 When running Hotmail, The Cloud provides
Software as a Service (SaaS). The deploy-
ment, maintenance, hosting, and even execu-
tion of the mail client and server are taken care
of for you by Microsoft. They are abstracted
away so you can use the functionality to re-
ceive, send, and organize mail.

•	 If you develop and run a service deployed to
Amazon EC2, Amazon supplies virtual serv-
ers on tap to host and run your service. This
virtualized hardware provides Infrastructure as
a Service (IaaS). The procurement and rack-
ing of servers, as well as the power require-
ments, air conditioning, and maintenance of
the machines are abstracted away so you can
concentrate on running your service and serv-
ing your users.

•	 That leaves Platform as a Service (PaaS) strad-
dling the middle. Think of this as software
that enables you to develop and run software.
For example, if your cloud service provides an
RDBMS to store and process data this is PaaS.

Together these three layers of cloud services form a
stack as seen in Figure 1.

For industry examples of each of these see Cloud
Computing: One Picture and Several Examples.3

The Cloud from a Testers Point of View

The Cloud changes the way we test on two levels:

•	 As in Part 1 (TiP) and Part 2 (TestOps) this is
primarily focused on software services. But
even when not run from The Cloud (services
run conventionally from a data center), there
are tools and techniques The Cloud brings to

bear on your test approach.
•	 And if your service is run in The Cloud, then

a further level of strategies is opened up to
you for use in your test plans. Let’s start with
these first.

Cloud Enabled Testing for Cloud Deployed Services

Test in Cloud (TiC) - The most straightforward and
perhaps most powerful test technique leverages

Continued on page 5

Three layers of The Cloud form a stack

Saas: Software as a Service
Provides applications to the end user.

Applications

Platform as a Service
Provides developers with resources that enable them to create applications.

IaaS: Infrastructure as a Service
The cloud is replacing the user’s need for some physical resource.

RDBMS Operating
Systems Web Servers Frameworks

& Runtimes
Message
Queue

Servers Storage CDN Network

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/togherkin

5Follow us at www.twitter.com/testingclub

What would a testing museum look like? http://bit.ly/testingmuseum

Continued from page 4

 cloud elasticity and the power of zero. If the Sys-
tem Under Test is deployed using the The Cloud,
then spin up your test environment in The Cloud
also and make it look exactly like your production
one. Some call this Test in Cloud (TiC).
	 When promoting Testing in Production in
Part 1, our motivation was to test in an environment
as close to (or actually in) the production environ-
ment. Because you can provision cloud resources
as needed, you can create a test environment that
looks just like production. Cost then is the main
reason we do not buy thousands of servers to mimic
our large scale production systems, but with The
Cloud you pay only for what you use and pay
nothing when you do not need it. This is unlike a
physical lab that requires care and maintenance all
the time. Also unlike a physical lab you will always
have the same machines (virtual machines) as pro-
duction; there is no need to upgrade hardware in the
lab as production SKUs are updated.
	 The test deployment differs from produc-
tion in one key way - it is not carrying real user
traffic. Although it requires some more engineer-
ing, you may copy real user traffic and send it to
the test environment. Real users only see responses
from the production environment while engineers
can evaluate how the test environment handles the
copied data from real usage. This methodology is
sometimes referred to as Shadow Deployment.

Canary Deployment

Netflix provides instant video streaming throughout
the Americas and parts of Europe. Their scale is
huge, accounting for 32.7% of internet download
bandwidth in North America;4 therefore they chose
Amazon web services to host their service. While
ramped Deployment is a powerful and fundamen-
tal technique of Testing in Production not specific
to cloud services, how Netflix does it with their
Canary Deployment5 would be cost prohibitive for
services not in The Cloud. Netflix video streaming
is deployed to the Amazon EC2 cloud service. Their
canary deployment process is described in Figure 2.
	 This way Netflix leverages their 1 Billion
API requests per day to derive quantitative assess-
ment of the quality of new releases. Problems such
as memory leaks which can be difficult to find are
easily revealed this way.6

Cloud Enabled Testing for All Services

Test in Cloud (TiC)... Again - Even if your service
is not deployed to The Cloud, you can still take
advantage of cloud technologies to test it. Test in
Cloud was a good choice for cloud deployed servic-
es as it enabled an instant duplicate of production
for use in testing. The challenge for a traditional
service is to duplicate the server configurations,
network topologies, and security configuration in
The Cloud that looks like the physically deployed
service in the data center. Amazon Virtual Private
Cloud (VPC)7 overcomes much of this challenge,
allowing configuration of routing tables, IP address
ranges, and security policies. Using access control
lists you can ensure no one else can access your

The current version (Vcurr) of a Netflix service is
deployed to the cloud and carries user traffic

The new version to be evaluated (Vnext) is
deployed to the cloud, but carries no user traffic

A single server from Vnext starts taking user
traffic. This is the “canary”. This server is moni-

tored. If there is a problem all user traffic is
easily routed back to Vcurr. If no problems are

observed and all goes well then…

All user traffic us moved from Vcurr to Vnext.
The Vcurr server instances remain while the

new Vnext is monitored for sufficient period to
assure engineers that all is well. If a problem

occurs with Vnext, rollback to Vcurr is easy

Finally once Vnext has proved itself trouble free,
the Vcurr server instances can be de-provisioned

The Netflix “Canary”
Deployment in The Cloud

cloud based sandbox but you and your test suite.
	 One Million Users - Another way to lever-
age The Cloud is for synthetic load generation. The
benefits here are elasticity, which lets you ramp up
to usage levels to challenge even the most scal-
able of services, and geographic distribution which
enables you to hit your service from all over the
globe. The latter is important as your service will
behave differently when all load comes from a
single source versus geo-distributed load.
	 You can design your own load genera-
tion system or use one already in the marketplace.
SOASTA is one such system. In one of their most
impressive case studies they generated the load of
one million concurrent users on top of actual live
traffic to test MySpace streaming music.8 This test
pummeled MySpace with 6 Gigabits and 77,000
hits per second. SOASTA and other such systems
like LoadStorm run on top of existing cloud ser-
vices like Microsoft Azure to achieve high traffic
volume and geographic diversity.
	 Facebook also enables app developers on
their platform to create test users. The goal here
is not so much scale as data integrity. Facebook
test users can neither see nor be seen by real users.
Without such a capability, app developers would
create free real users, thus clogging up Facebook
with bogus data. Facebook also gives developers
the ability to create and destroy these test users
programmatically via an API, enabling test automa-
tion. In this case Facebook is leveraging their cloud
platform to provide test users as a service.
	 Big Data - As discussed in Part 2 TestOps,
testers will become more interested in leveraging
the big data pipe (large telemetry stream) coming
from their services for use in quality assessment.
To store and process this big data we turn once
again to The Cloud. While Hadoop is a popular
open source system for just such a task, one still

Continued on page 6

AUTHOR PROFILE - SETH ELIOT

Seth Eliot is Senior Knowledge Engineer
for Microsoft Test Excellence focusing on
driving best practices for services and cloud
development and testing across the compa-
ny. He previously was Senior Test Manager,
most recently for the team solving exabyte
storage and data processing challenges for
Bing, and before that enabling developers
to innovate by testing new ideas quickly
with users “in production” with the Micro-
soft Experimentation Platform (http://exp-
platform.com). Testing in Production (TiP),
software processes, cloud computing, and
other topics are ruminated upon at Seth’s
blog at http://bit.ly/seth_qa and on Twit-
ter (@setheliot). Prior to Microsoft, Seth
applied his experience at delivering high
quality software services at Amazon.com
where he led the Digital QA team to release
Amazon MP3 download, Amazon Instant
Video Streaming, and Kindle Services.

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/testingmuseum
http://exp-platform.com
http://exp-platform.com
 http://bit.ly/seth_qa

6 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Get your one page guide / mindmap to mobile testing - http://bit.ly/startingmtesting

Continued from page 5

must procure the hardware to run it then deploy and
maintain a Hadoop cluster. Instead you can abstract
away these tasks by using Microsoft Azure’s new
solution which provides the Hadoop platform as a
service (PaaS).9 Alternatively Google provides turn-
key data analysis of terabytes of data with its own
BigQuery solution.10

	 Ignore at Your Own Peril - The advantages of
The Cloud for service development and deployment
will continue to drive cloud11 growth. Microsoft de-
votes 90% of its R&D budget to cloud , while Amazon
continues to see amazing growth in its cloud services,
doubling the cloud storage by users in just 9 months.12
Testers need to be aware of The Cloud and how it can
be used to deploy and test high quality services. □

1.	 http://techcrunch.com/2009/06/04/liveblogging-microsofts-ray-ozzie-on-the-potential-of-cloud-computing/
2.	 http://blogs.forrester.com/james_staten/10-05-20-could_cloud_computing_get_any_more_confusing
3.	 http://blogs.msdn.com/b/seliot/archive/2011/07/25/cloud-computing-one-picture-and-several-examples.aspx
4.	 http://www.technolog.msnbc.msn.com/technology/technolog/netflix-uses-32-7-percent-internet-bandwidth-119517
5.	 http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
6.	 Slides: http://www.slideshare.net/joesondow/building-cloudtoolsfornetflix-9419504

Talk: http://blip.tv/silicon-valley-cloud-computing-group/building-cloud-tools-for-netflix-5754984
7.	 http://aws.amazon.com/vpc
8.	 http://highscalability.com/blog/2010/3/4/how-myspace-tested-their-live-site-with-1-million-concurrent.html
9.	 https://www.hadooponazure.com/
10.	 https://developers.google.com/bigquery/
11.	 http://www.forbes.com/sites/kevinjackson/2011/04/19/cloud-to-command-90-of-microsofts-rd-budget
12.	 http://aws.typepad.com/aws/2011/10/amazon-s3-566-billion-objects-370000-requestssecond-and-hiring.html

REFERENCES

What testers can learn from
Cybernetics (of Cybernetics)
By Stefan Kläner

The word ’cybernetics’ comes from the Greek
word Κυβερνήτης; the act of steering. So what
does the captain of a ship do to safely maneuver his
ship into the harbor? He is constantly adapting the
process. If the ship drifts to the left because of wind
conditions, he estimates the deviation and applies
countermeasures to correct the error. The result is
a possible course deviation to the right, so he has
to estimate the deviation towards his goal (Τελος)
in each moment. What is happening here? The
steering (the cause), produces an effect; the course
deviation. And then the effect becomes a cause -
another course deviation. This example introduces
circular causality and during the article we will
experience why circularity is the essential principle
of cybernetic thinking.

Cybernetics

Cybernetics arises when an effector (e.g. a heater,
an engine, etc.) is connected to a sensor mechanism,
which acts with a signal upon the effector. But
cybernetics, much like testing, has many different
definitions:1

•	 Norbert Wiener - The study of control and
communication in the animal and the machine.

•	 Stafford Beer - The science of effective
organization.

•	 Gregory Bateson - A branch of mathematics
dealing with problems of control, recursiveness
and information.

•	 Gordon Pask - The science of defensible
metaphors.

•	 American Society for Cybernetics - The study
of systems and processes that interact with
themselves and produce themselves from
themselves.

Norbert Wiener, who re-introduced cybernetics
into scientific discourse in 1948, observed “the
behavior of such systems may be interpreted as
directed toward the attainment of a goal”.2 What
he means is that systems have a goal, and they use

information to get to the goal. The behavior that
Wiener observed was later called feedback. Human
beings that interact with their environments have
goals, and they use feedback to get to their goals,
so first-order cybernetics is a science of feedback
(circularity), information and goals.
	 Wiener founded cybernetics on the
metaphor of mechanism but many confused

Continued on page 7

B
ri
e
f

H
i
sto
r
Y

O
F

Ti
m
ea

F
re
n
c
hE
d
i
t
i
o
n

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/startingmtesting
http://techcrunch.com/2009/06/04/liveblogging-microsofts-ray-ozzie-on-the-potential-of-cloud-computing/
http://blogs.forrester.com/james_staten/10-05-20-could_cloud_computing_get_any_more_confusing
http://blogs.msdn.com/b/seliot/archive/2011/07/25/cloud-computing-one-picture-and-several-examples.aspx
http://www.technolog.msnbc.msn.com/technology/technolog/netflix-uses-32-7-percent-internet-bandwidth-119517
http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
http://www.slideshare.net/joesondow/building-cloudtoolsfornetflix-9419504
http://blip.tv/silicon-valley-cloud-computing-group/building-cloud-tools-for-netflix-5754984
http://aws.amazon.com/vpc
http://highscalability.com/blog/2010/3/4/how-myspace-tested-their-live-site-with-1-million-concurrent.html
https://www.hadooponazure.com/
https://developers.google.com/bigquery/
http://www.forbes.com/sites/kevinjackson/2011/04/19/cloud-to-command-90-of-microsofts-rd-budget
http://aws.typepad.com/aws/2011/10/amazon-s3-566-billion-objects-370000-requestssecond-and-hiring.html

7Follow us at www.twitter.com/testingclub

Can we create a mobile test lab? http://bit.ly/mobiletestlab

Continued from page 6

mechanism with machine, and treated both as if the
controller, the feedback generator, was separate and
external from the system. This may sound familiar.
As testers we act as feedback providers, and for a
long time we were not seen as part of the system.
Indeed, there are still many who support the idea of
an independent, external test team.
	 First-order cybernetics follows the scientific
principle of objectivity and separates the subject
from the object and refers to an independent world.
Wiener ii stated that control is linear and causal:
the controller controls the controlled. That would
indicate that the meaning lies in the text and not the
reader. Furthermore, any responsibility is passed on
to a higher level of hierarchy.

Second-Order Cybernetics

	 In around 1970 second-order cybernetics
came into being. It is characterized by its circularity
and by the paradigm of inclusion, which means the
inclusion of the actor/observer. Heinz von Foerster3

talked about “cybernetics of observing” as opposed
to “observed systems” (first-order).
	 So while first-order cybernetics talks about
linear causality and the strict separation of the
observer and the observed, second-order cybernetics
adapted the logic of George Spencer-Brown.4 He
wrote in his book Laws of Form: “Draw a distinction
and a universe comes into being.” In his opinion the
act of distinction is the most essential operation of
thinking. If we want to describe something we have
observed we must start by drawing a distinction,
because if we have not chosen a distinction first then
we are not able to describe anything.
	 Second-order cybernetics violatesi the
basic principle of scientific work, which is the
principle of objectivity. The properties shall not
enter the description of his observations or in other
words, there must be a strict separation between
the observer and the observed. Heinz von Foerster5
describes why this violation is necessary: “If the
properties of the observer (namely to observe and
describe) are eliminated, there is nothing left; no
observation, no description.” He also encourages
the observer “to speak about oneself,” therefore
shifting the way of looking at things from “out
there” to looking at “looking itself.”ii So he claims
that every cybernetician is responsible for his
action/observation and manifests it by saying “a
cybernetician, by entering his own domain, has to
account for his or her own activity. Cybernetics
then becomes cybernetics of cybernetics”.vi

	 First-order cybernetics uses specific
concepts, assumptions and theories that are not
reflected; so you basically just act. Second-order
cybernetics asks questions as: “What is the purpose
of the purpose? What is the goal of the goal?”
Nothing is taken for granted.
	 Through reflection about the purpose and
the goal of observing, second-order cybernetics
introduced the notion of the responsibility of an
observer for his observing. Glanville6 goes a step
further and says the observer is not only responsible
for his observing but also for “its frozen version,
which we like to call observation. He is responsible,

it is his, his own, he owns it and he must own it
— as the therapist will tell us. We, as humans, as
cognitive beings, must take responsibility for our
observing (our knowing, our living, our acting, our
being . . .) for we cannot pass on our observing: it is
ours, integrally ours.”
	 Probably the best insight of cybernetics
is that all sorts of things go wrong: uncertainties,
limitations, understanding, descriptions or
everything else we have not imagined or thought of.
	 Sociology in particular has adapted the
notion of circular causality, under the influence
of Luhmann’s social systems theory7 and later
Baecker8. But the adoption of circular causality
can be found almost everywhere in social sciences.
Bateson9 used it to describe his idea of double
blind. Glanville6 and Pask10 discovered that design
works according to circular causality. Beer11 also
considers it an essential concept in management
cybernetics.
	 So we have seen that circularity is an
essential concept of both first-order and second-
order cybernetics. But although we have to deal
with non-linear systems, we still believe in linear
cause and effect. If cause and effect are indeed
linear, where do we stop? A influences B, B
influences C, C influences D... Until we are on
a level of molecules and atoms. We just have to
accept that everybody influences everybody and
everything is interconnected.

What Cybernetics Teaches Us

Ashby’s Law of requisite variety12 follows the
thought that every system has boundaries. For
example, if you want to go to X but you are off the
path by 10%, you correct your course and you are
fine, but when you are 25% off you are screwed.
Imagine a program with a number of critical defects,
it is probably not a nice situation but you can fix
those defects and keep developing the software. But
if the software is so screwed up that it does not make
any sense any more to fix all the defects, it is time
to cancel the project. Or imagine an air conditioning
system: When the temperature is 30 degrees it will
work fine and bring it down to 18 degrees, but if
the outside temperature reaches 35 degreesiii it
might fail in bringing the room to a comfortable
temperature. So the system (the room, the thermostat,
the air conditioning, and so on) has a certain variety.
Requisite variety is the ability to achieve the goals
that we have for it. Classic examples are biological
systems, e.g. human beings. There has to be requisite
variety to keep the body temperature at a steady
level, to keep the glucose level at a steady level, etc.
Ashbyxii refers to those as essential variables and
the human body has the requisite variety to keep the
essential variables steady in order to stay alive within
certain limits. Bringing us back to software, you can
develop a piece of software to do whatever you want,
but the more variety it has (more features, more
capacity, etc) the harder it is to build. So the amount
of variety you want to program into the software
has trade-offs. Awareness of the trade-offs (the
limitations of the system) is critically important.
	 Heinz von Foerster connected his idea of
the ethical imperative with cybernetics. Which he
defines as follows: “Act always so as to increase

AUTHOR PROFILE - STEFAN KLäNER

Stefan Kläner works in the software testing
field since 2008 with a main focus on usabil-
ity and acceptance testing. Stefan is a firm
believer in self education. When he is not
testing he researches on systems theory,
design thinking, sociology and psychology.
He also occasionally tweets as @sklaener.

the number of choices.”13 What Heinz von Foerster
means is that we should not limit the activities
of someone else and instead we should act in a
way that enables the freedom of others and of the
community. The higher the level of freedom, the
more elevated the level of choice and the greater
the opportunity to take responsibility for our own
actions. Conversely if we limit someone’s freedom
we take from him the chance to act responsibly. Of
course it is easier to hide behind a hierarchy and to
say “But I just followed orders! It was not my fault!
There was no other choice!” My point is, we should
not limit any co-workers freedom. We might not
like opinions because they do not match with ours,
but we should offer alternativesiv instead of judging.
	 Let us take a look at the certification debate:
Instead of categorizing testers into certified and
non-certified groups we should offer alternatives. It
would be healthier for our craft if we stop judging
people for taking part in a certification course or for
being certified. Do we know what is the best, the
right, the bad or the wrong? There is no single or
absolute truth that forces someone to see things in
only one way and to act in only one way; we are free
to choose, free to decide. Wittgenstein14 taught us
that the truth is tautological. Because in the end, to
extend Baecker’s “if we turn down the belief that the
world is full of things, attributes and characteristics
and instead, believe that it is full of processes
whose beginning is unknown, we are faced with the
unbelievable phenomenon that a frog is a frog, love
is love and money is money”15, a test is a test.
	 Due to the self-referential nature of
cybernetics, von Foersterv proposes a shift from
“Thou shalt [not]...” to “I shall [not]...” because
“we can only tell ourselves how to think and act”.
So self-reference teaches us that A to B, B to C, C
to A = A to A. Pradeep Soundararajan tweeted a
couple of months ago, that “Testers don’t improve
quality, those who listen to them do”.v My reply
was that I disagree with him, and that testers only
contribute to a causal chain (circularity). But due to
the limitation of 140 characters I never explained
why; so let me do it now. A tester influences a
programmer, a programmer influences a project
manager and the project manager influences the
tester. So the tester influences himself. That is,
why, in my opinion, Pradeep’s tweet should have
been: “Testers, who listen to themselves, improve
quality.” Because the tester by the way he acts,
influences the whole team and vice versa.
	 Second-order cybernetics is a study in
which observers and actors take responsibility for
their observations and actions and as a result it

Continued on page 8

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/mobiletestlab

8 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Continued from page 7

encourages us to accept errors. No matter if they are
intentional, out of ignorance, by opinion or otherwise
created. All errors, failures, mistakes, etc. are welcomed
and remain the responsibility of their owner.
	 Any observation needs an observer;
cybernetics of cybernetics insists that there
are processes, and that we are involved with
and in our processes. It insists that there is no
observation without an observeriii, no knowing
without a knower, no communicating without a
communicator,vi 16 no thinking without a thinker,
no thinking without thinking, no testing without a
tester and also no testing without testing. Having
said that, the creation of an automatic test-script
insists of a tester, and is therefore allowed to be
called testing. The pure execution of an automatic
test-script is not, because testing requires a tester,
not a machine. So cybernetics of cybernetics
supports the distinction Michael Bolton17 18 has
drawn - to say it with Spencer-Browniv - between
testing and checking. Some people argue, that one
day these tools might be intelligent enough and
that we then have to acknowledge that the tool is
indeed testing and not checking. Alan Turing was
confronted with similar questions: Can machines
think? And does artificial intelligence exist? In
order to find an answer, he came up with the
Turing-Test19. The Turing-Test, which is still used
in the science of artificial intelligence, consists
of an entity behind a curtain, and it does not exist
further information about the entity. Now several
scientists ask the entity questions, and after a
while of questioning the entity, they will judge if
the entity is a human-being, a machine or that it is
not decidable. If the scientists interpret the given
answers as one from a human-being but, instead,
the entity is a machine, we have to acknowledge
that the machine is indeed an intelligent one.
Several cyberneticians addressed this test, and
Heinz von Foerster13 asked the question: “Do
we really verify the possible intelligence of the
machine, or do those scientists testing themselves?”
They are indeed testing if they are able to
differentiate a machine from a human-being or vice
versa. Heinz von Foerster13 framed his conclusion
in the wonderful way: “Tests test tests”.
	 Another problem of test automation is the
fact that the tools, of course, contain bugs as well. But
one of our desires of automation is reliability, which a
tool can certainly not fulfill. Or as Glanville20 frames
it: “It is the irony of our image of the machine that
we take the machine-metaphor to indicate unfailing,
predictable reliability, whereas all we can really
predict about machines is that they fail.”

Cybernetics & Agile

Agile Software Development is full of circularity;
actually it is circular in itself. But most approaches to
Software Testing have almost no circular notions. We
are trying to involve the customer in the process, but
this mostly helps on the level of ATDD or, as Gojko
Adzic calls it, Specification by Example. If we use
the Laws of Form by Spencer-Browniv to illustrate a
traditional approach to Software Testing we would
end up with something like this:

	 Allow me to re-frame an interpretation of
Ashby’s Law of Requisite Variety: The circularity of
a verification and validation system must be equal to
or greater than the circularity of the system it tries to
verify and/or validate. Glanville21 extended Ashby’s
Law, and said that it, in fact, needs exactly the same
variety. What do I mean by this? Only if we increase
the feedback, which we provide ourselves, can we
handle the problems we are facing. Change is all
around us and while we claim to respond to it, our
traditional approaches fail miserably. We are either
not fast enough or do not find the important defects,
or even both. I admit, it is unfair to say that our
traditional approaches have no circularity at all, we
do reflect on our test design and strategy, but usually
not systematically enough.
	 Exploratory Testing is definitely a step into
the right direction, but does our entire testing have
to be exploratory? Certainly not, but Exploratory
Testing seems to work very well for a lot of people in
Agile environments. My theory is that the reason for
it is the circular character of Exploratory Testing and
that is why I believe it is beneficial to adopt the form
of Exploratory Testing. Bach22 defines Exploratory
Testing as ”simultaneous learning, test design, and test
execution”. Let me model this as well, because ”when
the present has ceased to make sense, it can still come
to sense again through realization of its form”iv:

	 Now we can see how circular it is,
we can expand it further and see even more
circular aspects. There is no need for it to happen
simultaneously; it is just important that the
reflection about what has been done goes back
into the design process or into further test ideas,
and therefore further test charters. That is what
Spencer-Browniv and Luhmannvii call re-entry. If we
have no feedback in our own process, how can we
get better giving feedback to others? There is also
no need to call it Exploratory Testing, or anything
else since the name is really not important. An
argument uttered twice does not make it more true,
a test executed twice (without a code change) does
not make it more likely to find defects, or to say it
with Spencer-Browniv “to recall is to call”. There is
more than one way to react on the change around
us. But the chosen way has to be viable. It needs to
fit in the context; it needs to be compatible with the
system. We need to accept and understand the fact
that in evolutionary processes, it might appear from
the outside view, that we do not choose the best
solutions but some solution. But to assess those as
better or worse is an observation of second-order
and therefore only questionable from the inside.
	 Our process will become unmanageable
when it is not possible for us to provide the
necessary feedback in time. At first, unmanageable
may sound like a problem, but it might actually
be a desired state to be in. Agile already has
the notion of self-management, so why do we
still empower Test-Managers? Instead of one
controlling/observing all the others, all participate

in shifting towards group self-control. So every
Tester becomes a Manager, because control is
“neither action nor reaction: it is interaction”23.
We need a shift from Testers, which look at their
job descriptions and act upon it, to Testers that test
with all their senses. They do not only need to get
their work done, but they also need to observe what
their colleagues are doing. We need to observe if
our colleagues get their work, on which we highly
depend as a group, done. Our ability of cooperation
does, therefore, heavily depend on our ability to
observe and not so much on the ability to talk. We
need to include, the previously excluded (or the
unmarked state as Spencer-Brown calls it), in our
observation again.
	 That is where Pair-Testing or a group
approach to Testing (or Testing Dojos) kicks in.
These approaches are valuable, but not necessarily
suitable. Not suitable because some people prefer
to test on their own. And what we are doing then
is telling them to get out of their comfort zone. Let
us apply the already mentioned ethical imperative,
are we really in the situation to tell people how to
be most effective? I most certainly doubt that. Yes,
I would even claim that they are most effective
when they feel most comfortable. If we embrace
the state of unmanageability and implement daily
reflection sessions (whatever form they may have),
in addition to stand-up sessions, we can enhance
our creativity by borrowing ideas and knowledge
from others. By reflecting as a group, not in small
debriefing sessions, we increase “our number of
choices”, our possibilities. But only if we reflect
together on how we tried to reproduce a bug, why
we selected the strategy we selected, why we used
the techniques we used, etc. Perception already
forces us to focus and therefore we will only see
part of what is possible to see. That is why two
persons, who observe the same event will make
different observations. And only qua reflection
(and, of course, self-reflection) can they compare
their observations and gain more insight. So we
need an open mind and to keep listening and
observing, otherwise “we stand a good chance of
missing possibilities by imposing on it our lack of
imagination and blindness.”23

	 When I say that we need to reflect more
about what we are doing, and why we are doing it,
does it mean that we are currently not able to learn?
As I see that Ad-hoc Testing is slowly disappearing,
which of course is a good thing; we can say that
we do learn something in this regard. So my
observation is, that we are able to learn in our daily
work (using techniques, applying heuristics), but
we still struggle with our semantics. There are still
many who interpret found bugs as if they would
imply a measure of safety.

Therefore we pretend something towards our
customers, our management and ourselves, which
does not reflect our practical work; seeing found
defects as potential dangers, risks.

Continued on page 9

Become a Test Ninja! www.testninjas.com
Brief
HistorY

OF
Time

a

FrenchEdition

www.testninjas.com

9Follow us at www.twitter.com/testingclub

Check out our latest events and resources on www.ministryoftesting.com

Continued from page 8

Cybernetics & Quality

Weinberg24 stated, that “quality is value to some
person” and Michael Bolton25 went a step further
and said “X is X to some person”. While I value
both versions, I want to make a suggestion for
a short, modernvii notion: Quality is observer-
dependent. And, of course, the observer changes his
way of observing over time.
	 Cybernetics is a way of looking at things, a
way of understanding what is going on. We should
not ask what cybernetics is, but when it is. Imagine
a child that tries to get an apple from a tree. And
the child takes a stick to get the apple. In this case
cybernetics is not the apple it is the stick.

HOW DO WE GET THERE?
HOW CAN WE DO THINGS?

HOW CAN WE ACHIEVE THINGS?

	 Information could be anything but it
does not make sense if you do not know how to
interpret it. So in this article there is data, but
only when you read it you generate information.
Data is nothing and form is only in the eye of the
receiver. Information is generated by the one who
looks at things.
	 Observing is a more general dynamic than
Heisenberg’s demonstration that if you observe
something, you alter it. It is more like: We configure
(in terms of design) the room that, while we
configure it, configures us. In conclusion: observing
is not a passive activity, an import of information.
How we see things is not determined by the object
alone. If you kick a dog, the reaction of the dog is
not determined by the energy effect (caused by the
kick) but by its inner structure and past experiences
(Batesonix). The same applies to our observations.
	 We should stop talking about the content of
testing and start talking about the form of testing, in
which the content is expressed (everything which
is expressed, is expressed in a certain form). There
are different perspectives and ways to interpret
the Laws of Form. One way is to understand
and to comprehend processes. Another one is to
understand the content, which is formed in and
by a process. But it is also important to see that
the process (the distinction) and the content, as a
result, emerge together. Or to say it with Varela26:
“Wanderer the road is your footsteps, nothing
else; you lay down a path in walking”. So the path
emerges while walking. If we continue to talk only
about the content, and one could argue that we
are doing so since Glenford Myers’ “The Art of
Software Testing”, we only end up in discussing
different points of view, different beliefs. And
the content is of second-order and therefore only
discernable within the process it emerges in.
	 The logic of the Laws of Form makes
explicit that no statement is to be taken existentially,
which is something a tester should be familiar with.

REFERENCES

1.	 http://www.asc-cybernetics.org/foundations/
definitions.htm

2.	 N. Wiener. Cybernetics or Control and
Communication in the Animal and the Machine.
MIT Press, Cambridge, 1948.

3.	 H. von Foerster. The Cybernetics of Cybernetics.
BCL Publication, Urbana, 1974.

4.	 G. Spencer-Brown. Laws of Form. Allen and
Unwin, London, 1969.

5.	 H. von Foerster. Ethics and second-order
cybernetics. Understanding understanding:
Essays on cybernetics and cognition, 2003.

6.	 R. Glanville. Why design research? Design:
Science: Method, 1981.

7.	 N. Luhmann. Social Systems. Stanford University
Press, Stanford, 1995.

8.	 D. Baecker. The writing of accounting. Stanford
Literature Review, 1992.

9.	 G. Bateson. Steps to an Ecology of Mind.
Chandler, New York, 1972.

10.	 G. Pask. The architectural relevance of
cybernetics. Architectural Design, 7(6):494-496,
1969

11.	 S. Beer. Designing freedom. House Of Anansi,
1993.

12.	 W. Ashby. Introduction to Cybernetics.
Chapman and Hal, London, 1956.

13.	 H. von Foerster and B. Pörksen. Wahrheit ist die
Erfindung eines Lügners. Carl-Auer-Systeme,
Verl. und Verl.-Buchh., 1998.

14.	 L. Wittgenstein. Tractatus Logico-Philosophicus.
Routledge and Kegan Paul, London, second
edition, 1971.

15.	 D. Baecker. Nie wieder Vernunft. Carl Auer
Verlag, 2008.

16.	 G. Pask. Conversation, cognition and learning.

Elsevier, New York, 1976.
17.	 M. Bolton. Testing vs. Checking, August

2009. URL http://www.developsense.com/
blog/2009/08/testing-vs-checking/. [Accessed:
10-Apr-2012].

18.	 M. Bolton. “Merely” Checking or “Merely”
Testing, November 2009. URL http://www.
developsense.com/blog/2009/11/merely-
checking-or-merely-testing/. [Accessed: 10-Apr-
2012].

19.	 A. Turing. Computing machinery and
intelligence. Mind, LIX(236), 1950.

20.	 R. Glanville. Chasing the blame. Research on
progress - Advances in interdisciplinary studies
on systems research and cybernetics, 11, 1995.

21.	 R. Glanville. The Question of Cybernetics.
Cybernetics, an International Journal, 18, 1987.

22.	 J. Bach. Exploratory testing explained. 2003. URL
http://www.satisfice.com/articles/et-article.pdf.

23.	 R. Glanville. The Value of being Unmanageable:
Variety and Creativity in CyberSpace. 2000.

24.	 G. M. Weinberg. Quality Software Management,
Volume 1: Systems Thinking. Dorset House
Publishing Co., Inc., 1992.

25.	 M. Bolton. Done, The Relative Rule, and The
Unsettling Rule, September 2010. URL http://
www.developsense.com/blog/2010/09/done-
the-relative-rule-and-the-unsettling-rule/.
[Accessed: 10-Apr-2012].

26.	 F. J. Varela. Laying down a path in walking: A
biologist’s look at a new biology and its ethics.
Human survival and consciousness evolution,
pages 204-217, 1988.

27.	 N. Brunsson. The Organization of Hypocrisy:
Talk, decisions and actions in organizations. John
Wiley & Sons, 1994.

FOOTNOTES

i.	 “... it removes the claim of naive and absolute
objectivity that we have so (recently damaging)
built into our culture, our thinking and
language, so that we deny experience and
imagine (!) a universe that exists entirely of our
imagining” 19

ii.	 If I would have been consequent, the title of the
article really should be: What I as a tester can
learn from cybernetics (of cybernetics)

iii.	 Like the air conditioning on several German ICE
trains, which lead to inside temperatures to up to
50 degrees Celsius

iv.	 Like Cem Kaner has done it with the BBST, which
is now continued by the AST

v.	 http://twitter.com/testertested/
status/130638007677108224

vi.	 Luhmann7 insists that we cannot communicate,
we can only take part in an communication.

vii.	 As far as cybernetics can be considered ‘modern’
viii.	 	See http://thesocialtester.co.uk/gravitate-to-

people-like-you or Brunsson [27]
ix.	 See Argyris and Schön 1978, Jönsson and Lundin 1977

For example, the models of financial institutions
and banks (before the financial crisis) were based
on the Gaussian distribution. And just now we
realise that a normal distribution is not necessarily
the normal case. Second-order cybernetics and
the Laws of Form (the logic of second-order
cybernetics) help us to understand that the normal
distribution should be viewed as a special case
of several possible distribution patterns, in which
extreme accumulations are possible as well.
	 Will a reflection session end up in conflict?
It might, but that depends on the hiring processviii
and on the organizational structure. Performing
reflection sessions is easier in an organization
that is based on conflict, not on agreement
because “conflict as a principle of recruitment and
organization [...] lead to reflection”27. Keeping
conflict alive is a key element, but it is hard to do so
because people who work together tend (over time)
to think alikeix. But only if there are different views,
thoughts and/or opinions within a team, a reflection
session will be of value, because only then there is
an exchange of ideas and the possibility to come to
value new ways, new approaches.
	 Let me finish the article with a quote of
Glanvillevi that is, in my opinion, closely related to
testing: “We may recognize a computer working
as a medium… When we find it producing bizarre
results and/or when we use it (meaning, essentially,
its software) in an “incorrect” yet productive

manner. Thus, we may look for distortions. But
distortions, the unexpected, the unexplained, the
unanticipated, the random are all more-or-less
interchangeable terms that, in indicating surprise
may also indicate novelty, the new.” □

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
www.ministryoftesting.com
http://twitter.com/testertested/status/130638007677108224
http://twitter.com/testertested/status/130638007677108224

10 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Your one page guide to Session Based Test Management - http://bit.ly/sbtmmindmap

 thecartoon corner
CARTOON CORNER BY ANDY GLOVER A.K.A THE CARTOON TESTER - http://cartoontester.blogspot.com/

CAPTION COMPETITION!

Send in your caption ideas for the cartoon below by the 31st Septem-
ber for a chance to win a free book! Submit your entry on The Testing
Planet site (address below) and our resident cartoonist Andy Glover
will judge your entries ASAP after the closing date. Good Luck!

http://www.thetestingplanet.com/2012/07/bug-triage-caption-
competition/

WIN!

Brief
HistorY

OF
Time

a

FrenchEdition

WWW.MINISTRYOFTESTING.COM

http://bit.ly/sbtmmindmap
http://cartoontester.blogspot.com/
http://www.thetestingplanet.com/2012/07/bug-triage-caption-competition/
http://www.thetestingplanet.com/2012/07/bug-triage-caption-competition/

TM

The direct recruitment platform
connecting employers and contractors

Cut out the middle man today!

Reduce your costs - pay just 4% mark-
up on day rate, 6% for our payroll
end-to-end solution.

Reduce AWR overheads by directly
engaging with the talent you need.

Track workflow and manage the hiring Track workflow and manage the hiring
process for improved efficiency.

Enable oversight, unified views and control of
hiring, renewals and activity over time.

Employers

GET STARTED to pay
JUST 4% MARK-UP!

GET STARTED to pay
JUST 4% MARK-UP!

Find client work without reliance on
recruitment agencies and third parties.

Apply directly for roles and receive direct
approaches from employers with suitable
requirements.

Manage your applications through our
transparent interview and offer process.

Use elevate for free Use elevate for free and keep 100% of
your rate.

Contractors

SIGN UP FREE to see
YOUR MATCHING JOBS

SIGN UP FREE to see
YOUR MATCHING JOBS

£ $

Great roles available now from leading employers

www.elevatedirect.com

http://www.elevatedirect.com

12 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

What should you be thinking about when testing for accessibility? Check out this MindMap and list - http://bit.ly/accessibilitymm

Lean startup: An
interview with
Ben Wirtz
What were you doing before you
started your business venture?

I started Handy Elephant out of my masters in
E-Business & Innovation.

Where did you come up with the idea
and how has the business evolved?

The original business idea was very different. I
wanted a better tool to organise notes on contacts
and meetings, which would also remind me to
follow up with people. The past 1½ years have been
about testing our assumptions on the problem and
potential solutions against the market. We have
seen many different products related to contact and
relationship management by (often well-funded)
competitors along the way, which gave it one big
shot and ultimately failed. Our prototypes became
better with each iteration and as a result we are now
in a position to release a product that we have been
offered money for.

What’s the biggest challenge of
running a software company?

Work-life balance. At first, it’s easy to think that
you will succeed if you work hard enough, and you
can make a lot of progress. But after what might
seem like a never-ending slog you can start to lose
focus. It’s easy to end up running in the wrong
direction without even realising it.
	 I think it’s important to always have a fresh
mind by learning new things, meeting new people
and being interested and engaged in a diverse range
of topics and activities. If you do this, the ups and
downs of running a company may not hit you as
hard. It’s easier said than done though and I still
struggle with it after all this time. I’ve heard it said
that having one fixed day per week in which you
don’t do anything for your business at all is the least
you should do.

Can you tell us about how you
used Lean principles to build your
business?

I‘ve been a fan of the Lean methodology since the
first Start-ups Lessons Learned1 conference in 2010,
but it’s much harder to implement than it sounds.
In my experience when people say they only use
part of it, they are probably not Lean. Learning

REFERENCES

1.	 http://www.sllconf.com/
2.	 http://www.fourhourworkweek.com/

blog/2009/05/19/vanity-metrics-vs-actionable-
metrics/

3.	 http://www.ministryoftesting.com/training-
events/testbash/

4.	 http://the leanstartup.com/principles

Benjamin runs Handy Elephant, a Citrix Startup Accelerator funded company based in Cam-
bridge, UK. Before getting investment, he founded and bootstrapped Handy Elephant single-
handedly and was a freelance Android developer. His background is in information systems,
with a passion for social computing and relationship management. Before becoming an entre-
preneur, he studied in Germany and England, worked in IT consulting and had a job as assistant
sail instructor in the Whitsundays/Australia.

INTERVIEWEE PROFILE - BEN WIRTZ

definitely has to be at the centre of everything
you do. The main problems I have found with the
Lean start-up methodology is actually being able
to identify my own assumptions; things that seem
like common sense. It’s also necessary to test the
riskiest assumptions first and doing this means
having to define a good experiment, something that
also is quite difficult!
	 I see these as being core principles of the
Lean approach. If you don’t get them right then
everything else that people have in mind when
thinking about their tech’ start-up (using open
source software, automated tests and continuous
integration, having lots of “actionable analytics”2,
releasing buggy software, not raising investment)
doesn’t even matter – those are just tools. In the
early stages, actually building software should
usually be the last resort; there are usually quicker
ways to verify your ideas, e.g. interviewing
customers or non-functional clickable prototypes.
	 During the lifespan of my business so far,
we have made all the mistakes of a startup that
thought it was a lean-startup. I can confidently say
we’re not experts but we certainly still have the
aspiration to be lean and we will keep learning how
to achieve this.

How do you think a tester can add
value to a start-up?

I’m convinced (after speaking to testers at
TestBash3) it is the tester mind-set. These days
most companies will hopefully write automated
tests for their code and that might be done by
either developers or dedicated testers. It’s been said
though that developers often think more about the
actual execution (“How can I make this happen?”)
whereas testers will think about validation (“What
is the expectation and have we delivered it?”).
These questions and the skills to answer them are
useful not just in software testing, but also in testing

other hypotheses, business models and marketing
strategy for example.
	 Eric Ries has defined the build-measure-
learn cycle4 as the core element of a Lean Startup
methodology. While developers could build stuff
all day long and business people would love to
measure just anything, with a testing mindset
onboard, there might be more focus on (a) what
assumptions are we trying to verify, and (b) what is
the quickest way to verify them.

What does your team look like? At
what stage do you think you might
hire a tester to help out?

We are 3 hackers:
1 software development hacker
1 UX & design hacker
1 growth hacker

At this stage, it seems everyone needs to have a bit of
a testing mentality, so hiring a dedicated test-hacker
will come at some stage - but we wouldn’t be lean if
we had an exact plan for when exactly that is!

If a customer never sees a bug, does it
exist?

It’s not a bug, it’s a test! □

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/accessibilitymm
http://www.sllconf.com/
http://www.fourhourworkweek.com/blog/2009/05/19/vanity-metrics-vs-actionable-metrics/
http://www.fourhourworkweek.com/blog/2009/05/19/vanity-metrics-vs-actionable-metrics/
http://www.fourhourworkweek.com/blog/2009/05/19/vanity-metrics-vs-actionable-metrics/
http://www.ministryoftesting.com/training-events/testbash/
http://www.ministryoftesting.com/training-events/testbash/
http://the leanstartup.com/principles

13Follow us at www.twitter.com/testingclub

By James Christie

A few weeks ago two colleagues, who were having
difficulty working together, asked me to act as
peacekeeper in a tricky looking meeting in which
they were going to try and sort out their working
relationship. I’ll call them Tony and Paul. For various
reasons they were sparking off each and creating
antagonism that was damaging the whole team.
	 An hour’s discussion seemed to go
reasonably well; Tony talking loudly and
passionately, while Paul spoke calmly and softly.
Just as I thought we’d reached an accommodation
that would allow us all to work together Tony
blurted out, “you are cold and calculating, Paul,
that’s the problem”.
	 Paul reacted as if he’d been slapped in the
face, made his excuses and left the meeting. I then
spent another 20 minutes talking Tony through what
had happened, before separately speaking to Paul
about how we should respond.
	 I told Tony that if he’d wanted to make the
point I’d inferred from his comments, and from the
whole meeting, then he should have said. “your
behaviour and attitude towards me throughout this
meeting, and when we work together, strike me
as cold and calculating, and that makes me very
uncomfortable”.
	 “But I meant that!”, Tony replied. Sadly,
he hadn’t said that. Paul had heard the actual words
and reacted to them, rather than applying the more
dispassionate analysis I had used as an observer.
Paul meanwhile found Tony’s exuberant volatility
disconcerting, and responded to him in a very
studied and measured style that unsettled Tony.
	 Tony committed two sins. Firstly, he didn’t
acknowledge the two way nature of the problem. It
should have been about how he reacted to Paul, rather
than trying to dump all the responsibility onto Paul.

Quality isn’t something,
it provides something

Is it ethical to hide (unrepeatable or unimportant) bugs - http://bit.ly/ethicalbugs

James is a software-testing consultant based in Perth, Scotland. His website is http://clarotest-
ing.com/ and blog is http://clarotesting.wordpress.com/. He can also be followed on Twitter, @
james_christie. With 27 years commercial IT experience, in addition to testing he has worked in
information security management, project management, IT audit, systems analysis and pro-
gramming. This experience has been largely in financial services, but has covered a wide range
of clients, throughout the UK, and also in Finland.

AUTHOR PROFILE - JAMES CHRISTIE

	 Secondly, he said that Paul is cold and
calculating, rather than acting in a way Tony found
cold, and calculating at a certain time, in certain
circumstances.
	 I think we’d all see a huge difference
between being “something”, and behaving in a
“something” way at a certain time, in a certain
situation. The verb “to be” gives us this problem. It
can mean, and suggest, many different things and
can create fog where we need clarity.
	 Some languages, such as Spanish, maintain
a useful distinction between different forms of “to be”
depending on whether one is talking about something’s
identity or just a temporary attribute or state.
	 The way we think obviously shapes the
language we speak, but increasingly scientists are
becoming aware of how the language we use shapes
the way that we think.1
	 The problem we have with “to be” has great
relevance to testers. I don’t just mean treating people
properly, however much importance we rightly
attach to working successfully with others. More
than that, if we shy away from “to be” then it helps
us think more carefully and constructively as testers.
	 This topic has stretched bigger brains than
mine, in the fields of philosophy, psychology and
linguistics. Just google “general semantics” if you
want to give your brain a brisk workout. You might

find it tough stuff, but I don’t think you have to master
the underlying concept to benefit from its lessons.
	 Don’t think of it as intellectual navel
gazing. All this deep thought has produced some
fascinating results, in particular something called
E-prime, a form of English that totally dispenses
with “to be” in all its forms; no “I am”, “it is”, or
“you are”. Users of E-prime don’t simply replace
the verb with an alternative. That doesn’t work. It
forces you to think and articulate more clearly what
you want to say.2
	 “The banana is yellow” becomes “the
banana looks yellow”, which starts to change the
meaning. “Banana” and “yellow” are not synonyms.
The banana’s yellowness becomes apparent only
because I am looking at it, and once we introduce
the observer we can acknowledge that the banana
appears yellow to us now. Tomorrow the banana
might appear brown to me as it ripens. Last week it
would have looked green.
	 You probably wouldn’t disagree with any
of that, but you might regard it as a bit abstract and
pointless. However, shunning “to be” helps us to
think more clearly about the products we test, and
the information that we report. E-prime therefore
has great practical benefits.

Continued on page 14

Brief
HistorY

OF
Time

a

FrenchEdition

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/ethicalbugs
http://clarotesting.com/
http://clarotesting.com/
http://clarotesting.wordpress.com/

14 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Looking for a new job? Here are some tips on how to get hired - http://bit.ly/gethiredmindmap

Continued from page 13

	 The classic definition of software quality
came from Gerald Weinburg in his book “Quality
Software Management: Systems Thinking”. Quality
is value to some person”.
	 Weinburg’s definition reflects some of the
clarity of thought that E-prime requires, though he
has watered it down somewhat to produce a snappy
aphorism. The definition needs to go further, and
“is” has to go!
	 Weinburg makes the crucial point that we
must not regard quality as some intrinsic, absolute
attribute. It arises from the value it provides to
some person. Once you start thinking along those
lines you naturally move on to realising that quality
provides value to some person, at some moment in
time, in a certain context.
	 Thinking and communicating in E-prime
stops us making sweeping, absolute statements.
We can’t say “this feature is confusing”. We have
to use a more valuable construction such as “this
feature confused me”. But we’re just starting.
Once we drop the final, total condemnation of
saying the feature is confusing, and admit our own
involvement, it becomes more natural to think about
and explain the reasons. “This feature confused me
… when I did … because of...”
	 Making the observer, the time and the
context explicit help us by limiting or exposing
hidden assumptions. We might or might not find
these assumptions valid, but we need to test them,
and we need to know about them so we understand
what we are really learning as we test the product.
	 E-prime fits neatly with the scientific
method and with the provisional and experimental
nature of good testing. Results aren’t true or false.

The evidence we gather matches our hypothesis,
and therefore gives us greater confidence in our
knowledge of the product, or it fails to match up
and makes us reconsider what we thought we
knew.3
	 Scientific method cannot be accommodated
in traditional script-driven testing, which reflects
a linear, binary, illusory worldview, pretending
to be absolute. It tries to deal in right and wrong,
pass and fail, true and false. Such an approach fits
in neatly with traditional development techniques,
which fetishize the rigours of project management,
rather than the rigours of the scientific method.
	 This takes us back to general semantics,
which coined the well-known maxim that the map
is not the territory. Reality and our attempts to
model and describe it differ fundamentally from
each other. We must not confuse them. Traditional
techniques fail largely because they confuse the
map with the territory.4
	 In attempting to navigate their way through
a complex landscape, exponents of traditional
techniques seek the comfort of a map that turns
messy, confusing reality into something they can
understand and that offers the illusion of being
manageable. However, they are managing the
process, not the underlying real work. The plan is
not the work. The requirements specification is not
the requirements. The map is not the territory.
	 Adopting E-prime in our thinking and
communication will probably just make us look
like the pedantic awkward squad on a traditional
project. But on agile or lean developments E-prime
comes into its own. Testers must contribute
constructively, constantly, and above all, early.
E-prime helps us in all of this. It makes us clarify
our thoughts and helps us understand that we gain

knowledge provisionally, incrementally and never
with absolute certainty.
	 I was not consciously deploying E-prime
during and after the fractious meeting I described
earlier. But I had absorbed the precepts sufficiently
to instinctively realise that I had two problems;
Tony’s response to Paul’s behaviour, and Paul’s
response to Tony’s outburst. I really didn’t see it as
a matter of “uh oh – Tony is stupid”.
	 E-prime purists will look askance at my
failure to eliminate all forms of “to be” in this article.
I checked my writing to ensure that I’ve written what
I meant to, and said only what I can justify. Question
your use of the verb, and weed out those hidden
assumptions and sweeping, absolute statements that
close down thought, rather than opening it up. Don’t
think you have to be obsessive about it. As far as I
am concerned, that would be silly! □

REFERENCES

1.	 “How Language Shapes Thought”, Lera
Boroditsky, Scientific American (February 2011)
http://psych.stanford.edu/~lera/papers/sci-
am-2011.pdf

2.	 “Speaking in E-prime: An Experimental Method
for Integrating General Semantics into Daily Life”,
E W Kellogg III, Et cetera Vol 44, No 2, 1987.
http://www.generalsemantics.org/wp-content/
uploads/2011/05/articles/etc/44-2-kellogg.pdf

3.	 “Working with E-prime – Some Practical Notes”, E
W Kellogg III & D David Bourland Jr, Et cetera Vol
47, No 4, 1990. http://www.asiteaboutnothing.
net/pdf_workingwitheprime.pdf

4.	 “The Map is not the Territory”, Less Wrong wiki
community blog. http://wiki.lesswrong.com/wiki/
The_map_is_not_the_territory

Lean startup: An interview
with Alan Downie
There is this lightbulb moment, where
you have a business idea and you want
to make it happen. How do you get it
to become reality?

A lot of people in this industry have lightbulb
moments daily. The trick is to know which ones to
ignore, and which ones to get excited about. The
first thing I actually recommend is to do “nothing”!
Often that great idea doesn’t seem so great a few
days later. You need to sit and think on it a while.
Let it fester and build and annoy you when you
shower, when you drive to work and when you
sleep. Only when you can’t get it out of your head
after a week or two should you start thinking about
actually turning it into a business.

	 Then the first thing to do is to validate
whether anyone else is as excited about your idea as
you are... And more importantly, would they pay for
it? Everyone is crazy at the moment on going off
and building an MVP (Minimum Viable Product),
but they tend to forget the Viable part. Before you
build anything you need to confirm to yourself that
there is actually a business behind your idea.
	 Once you have some keen customers lined
up you can start actually building the product,
sourcing their feedback early and often. The
goal should be to get to a paid product as soon
as possible, and validate that these customers’
enthusiasm will actually translate to a payment.

Continued on page 15

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/gethiredmindmap
http://psych.stanford.edu/~lera/papers/sci-am-2011.pdf
http://psych.stanford.edu/~lera/papers/sci-am-2011.pdf
http://www.generalsemantics.org/wp-content/uploads/2011/05/articles/etc/44-2-kellogg.pdf
http://www.generalsemantics.org/wp-content/uploads/2011/05/articles/etc/44-2-kellogg.pdf
http://www.asiteaboutnothing.net/pdf_workingwitheprime.pdf
http://www.asiteaboutnothing.net/pdf_workingwitheprime.pdf
http://wiki.lesswrong.com/wiki/

15Follow us at www.twitter.com/testingclub

A Test Spec in a MindMap - http://bit.ly/testspec

Alan Downie is the Co-founder and CEO of BugHerd, the point and click bug tracker for the web.
Alan has been working in web for over 15 years. He headed up development of the award win-
ning Intranet DASHBOARD before teaming up with Matt Milosavljevic to produce the popular
UsabilityHub, Fivesecondtest and BugHerd.

INTERVIEWEE PROFILE - ALAN DOWNIE

Continued from page 14

A lot of people will try and pay with kind words
and smiles, but it won’t pay your mortgage. If you
really are onto something great, people will literally
throw money at you to get involved.

Do you use Bugherd internally?

I have to be honest here; the answer is not always!
The problem with BugHerd is that it isn’t capable
of tagging itself. Our tool is designed so that a user
can’t accidentally tag our app instead of their own.
The down side of that means we can’t tag errors in
our app either! We do however use BugHerd as our
bug tracker (even without the bug tagging). We run
our sprints using Pivotal Tracker (which integrates
with our bug list in BugHerd), we use our own
integration with GitHub and also with Zendesk for
support queries. We’re our own best customers!

What have been the biggest and/or most
challenging bugs you’ve had in your app?

The hardest part of building an app like ours is that
for the most part it is running on someone else’s
website. It means not only do we have to contend
with a bunch of browser issues, cross-domain
communication issues, but we also need to make
sure we don’t interfere with our customers’ websites.

This has meant putting a lot of time into sandboxing
our app and doing a lot of really crazy performance
testing to minimise the impact on the load times of
both our app and their website.

Do you have ‘professional’ testers in
your team? Why/why not?

[A] Not yet unfortunately. We’re a small team of 2
developers and 1 designer. Our next hire is likely to
be a support/tester role though. As I mentioned, our
app runs across so many different environments it’s
critical for us to get this right. We do however have
a pretty cool functional testing suite for our app.

Do you rely on your customers to
report bugs? If so, how does this
affect your relationship with them -
is it a good or bad thing, generally?

We do a lot of testing internally before we do releases,
and we almost always release new features to a small

group of beta customers first to minimise the chances
of bugs getting live, but of course it does happen
occasionally. I actually love it when customers report
bugs. Of course I wish we didn’t have bugs in the first
place, but if someone has taken the time to report an
issue it means they actually care. As a startup, getting
people to care about your product is the biggest
challenge you’ll face. If someone takes the time to
report an issue to us, we make sure to show them how
grateful we are for their efforts.

What’s the hardest thing about
running a tech business?

The hardest thing about running a startup is finding
that elusive product/market fit. You know you have
a great product, and you know people want it;
you just need to find the market that gets the most
value out of your idea (and thus pays you the most
money!), and then find a way to get it in front of
them. Anyone can build a product; it’s another thing
to build a product people will actually pay for! □

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/testspec
http://www.seapine.com/qawizard.htlm

How lean is your testing?
Lean software development is gaining support but how does that affect your testing? Different organisations and projects require different approaches to testing
but we should all be following the lean principles of ‘Seeing the whole picture’ and ‘Building Integrity in’. Could you ‘eliminate waste’ and ‘empower the team’? Use

this chart to help you decide if you’re using the leanest possible approach to testing for your project.

Features
of a Tester Cowboy Lean Agile V-Model Totally

enterprise

Documentation What documentation?

Automated tests written before
and during development which
later serve as documentation

(ATDD)

Automated tests written before
development begins (ATDD)

Manual testing is documented using
light-weight, easy changeable test plans

such as mind-maps or Google docs

Integration test plan and System
test plan written using design

documents. Unit and Integration
tests created but less likely to form

business facing documentation

Do it by the book. Make sure you
have Test Policies, strategies and test

plans written and signed off before
testing begins. Test entry and exit

criteria should be documented

Tools What tools?
Lightweight tools that can be

quickly set up and learnt
Bug management tool

Test management tool

Bug management tool

Test management tool

Bug management tool

Time management tool

Role I’m only a tester in
my spare time

Likely to involve tasks outside
of traditional testing: user

support, coding, marketing etc

Dedicated tester within mixed role
team i.e. tester on a scrum team

Dedicated tester within a test
team. System testing and

Integration testing are clearly
defined phases and may involve

different teams of testers

Multiple test teams are usually
involved to cover integration,

system, security, performance and
acceptance testing. Off-shore is

probably the norm

Learning Hard Knocks!

Peer Knowledge Swap

Hard Knocks!

Internet / Blogs / Communities

Books

Peer Knowledge Swap

Internet / Blogs / Communities

Books

Books

Formal Training Courses
Formal Training Courses

Test Planning We don’t plan testing Just in time Scheduled but fast paced
Formal. Clearly defined test

analysis and execution phases

Very formal. Dedicated team
members to plan and estimate

testing phases

Release
schedule

Code and push. Repeat to fix
everything that breaks

Releases are frequent and form
part of the ongoing development

and release cycle

Frequent. Releases probably not
scheduled but instead shipping

as soon as they are ‘ready’

Releases are frequent and
form part of the ongoing

development and release cycle

Frequent, planned
release schedule

Releases are frequent and form
part of the ongoing development

and release cycle

Infrequent. Well defined with clear
development and test phases

Release is likely to indicate
completion of the project

Rarely. Releases are
a very big deal

Release is likely to indicate
completion of the project

Bug
prioritisation

Unlikely to happen.
Bugs picked up and fixed as

developers wish

Frequently re-prioritised
against features

Severity and priority defined but
room to re-prioritise to meet

release schedules if needed

Clearly defined priority and severity
ratings. Classifications are usually
part of a company wide standard.

Testing phases will be extended if pre-
agreed levels of bugs are exceeded

Bugs reported and classified
as defined in industry

defined standards

Bug tracking Bugs don’t need tracking -
just get ‘em fixed!

Bugs raised by pretty
much everyone

Physical bug reports (index
cards, post-it notes)

Bugs raised by product owners as
well as developers and testers

Bugs recorded in a bug
management tool

Bug reports coming mostly
from the testers

Recorded in a test management
system and likely to be linked

to test plans

All bugs are raised by testers

Recorded in a test management
tool and linked to test plans,

requirements, technical specs etc

Goal Get this code live

Quick releases to get feedback
from users. Testing is complete

when the Minimal Viable
Product (MVP) is usable

Maintaining as few production
bugs as possible in an iterative

environment. Regression testing
favoured above new feature testing

Aiming for no bugs in production
Aiming for no bugs in production

plus a usable, secure, functionally
valid and performant system

How lean is your testing?
Lean software development is gaining support but how does that affect your testing? Different organisations and projects require different approaches to testing
but we should all be following the lean principles of ‘Seeing the whole picture’ and ‘Building Integrity in’. Could you ‘eliminate waste’ and ‘empower the team’? Use

this chart to help you decide if you’re using the leanest possible approach to testing for your project.

Features
of a Tester Cowboy Lean Agile V-Model Totally

enterprise

Documentation What documentation?

Automated tests written before
and during development which
later serve as documentation

(ATDD)

Automated tests written before
development begins (ATDD)

Manual testing is documented using
light-weight, easy changeable test plans

such as mind-maps or Google docs

Integration test plan and System
test plan written using design

documents. Unit and Integration
tests created but less likely to form

business facing documentation

Do it by the book. Make sure you
have Test Policies, strategies and test

plans written and signed off before
testing begins. Test entry and exit

criteria should be documented

Tools What tools?
Lightweight tools that can be

quickly set up and learnt
Bug management tool

Test management tool

Bug management tool

Test management tool

Bug management tool

Time management tool

Role I’m only a tester in
my spare time

Likely to involve tasks outside
of traditional testing: user

support, coding, marketing etc

Dedicated tester within mixed role
team i.e. tester on a scrum team

Dedicated tester within a test
team. System testing and

Integration testing are clearly
defined phases and may involve

different teams of testers

Multiple test teams are usually
involved to cover integration,

system, security, performance and
acceptance testing. Off-shore is

probably the norm

Learning Hard Knocks!

Peer Knowledge Swap

Hard Knocks!

Internet / Blogs / Communities

Books

Peer Knowledge Swap

Internet / Blogs / Communities

Books

Books

Formal Training Courses
Formal Training Courses

Test Planning We don’t plan testing Just in time Scheduled but fast paced
Formal. Clearly defined test

analysis and execution phases

Very formal. Dedicated team
members to plan and estimate

testing phases

Release
schedule

Code and push. Repeat to fix
everything that breaks

Releases are frequent and form
part of the ongoing development

and release cycle

Frequent. Releases probably not
scheduled but instead shipping

as soon as they are ‘ready’

Releases are frequent and
form part of the ongoing

development and release cycle

Frequent, planned
release schedule

Releases are frequent and form
part of the ongoing development

and release cycle

Infrequent. Well defined with clear
development and test phases

Release is likely to indicate
completion of the project

Rarely. Releases are
a very big deal

Release is likely to indicate
completion of the project

Bug
prioritisation

Unlikely to happen.
Bugs picked up and fixed as

developers wish

Frequently re-prioritised
against features

Severity and priority defined but
room to re-prioritise to meet

release schedules if needed

Clearly defined priority and severity
ratings. Classifications are usually
part of a company wide standard.

Testing phases will be extended if pre-
agreed levels of bugs are exceeded

Bugs reported and classified
as defined in industry

defined standards

Bug tracking Bugs don’t need tracking -
just get ‘em fixed!

Bugs raised by pretty
much everyone

Physical bug reports (index
cards, post-it notes)

Bugs raised by product owners as
well as developers and testers

Bugs recorded in a bug
management tool

Bug reports coming mostly
from the testers

Recorded in a test management
system and likely to be linked

to test plans

All bugs are raised by testers

Recorded in a test management
tool and linked to test plans,

requirements, technical specs etc

Goal Get this code live

Quick releases to get feedback
from users. Testing is complete

when the Minimal Viable
Product (MVP) is usable

Maintaining as few production
bugs as possible in an iterative

environment. Regression testing
favoured above new feature testing

Aiming for no bugs in production
Aiming for no bugs in production

plus a usable, secure, functionally
valid and performant system

 Brief
HistorY

OF
Time

a

French Edition

ATDD (Acceptance Test
Driven Development):

A collaborative activity
where the whole team

works to produce
Acceptance Criteria with

examples before the
development begins. The
goal is to create a shared

understanding of the
product or feature.

MVP (Minimal
Viable Product):

Frequently used in
Start-ups to define the

features needed for
launch and nothing more.
Popularised by Eric Rees.

Lean development
principles:

Eliminate Waste, Amplify
Learning, Decide as late

as possible, Delivery
as early as possible,
Empower the team,

Build Integrity in,
See the whole picture.

By Rosie Sherry & Amy Phillips

18 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

We have a job board for testing jobs - http://jobs.softwaretestingclub.com

The 5 W’s of Lean
Requirement Analysis
By Dan Ashby

I have come to realise, through my experience
and from discussion with other testers, that a vast
amount of project cycles (almost 65% out of all
the projects that I have worked on), have a lack of
consideration for the requirement-gathering phase
of the project. I understand that some customers
might not supply a requirements document, and
that an exploratory testing method could be used
to obtain an understanding of what the software
is and should do, but for those projects where
requirement documents are supplied, there does
not seem to be enough emphasis on the need
to test them. I’ve seen many instances where
requirements have appeared very vaguely written.
In the book “An Information Systems Manifesto”,
James Martin publishes his Distribution of
Defects, showing that 56% of defects found have
a root cause of poorly defined requirements. The
meta-information available from this statistic
certainly rings true in my own experience.

Why should requirement documents be tested?

I’m sure we have all seen our fair share of customers
that simply supply a minimalist specification that is
full of one-liner requirements, that the developers
start working on while the testers start writing test
cases. There have been many situations where
the developed product hasn’t really met what the
customer actually wanted. Many of these have
been captured via stories on the web about failed
projects due to the developed system not meeting
the customer’s needs. One such story can be found
in Lorin J. May’s article “Major Causes of Software
Project Failures”, where a multi million pound
military project, dubbed the “Titanic of military
projects”, ended in total failure when users refused to
use the system due to it lacking essential features for
them to be able to do their jobs.
	 There are many articles and blog posts
online that say: “Most bugs in software are due to
inaccurate functional requirements”. In fact, the
meaning behind James Martin’s statistics from his
research backs this up, but I’m sure most of us have
experienced these situations.
	 Ultimately, ambiguity in the requirements
cost us all time and money. Spending time to
develop something that is wrong from the start is
very frustrating.
	 Too often, Testers are left out of the
requirement-gathering phase, but in reality this is
where the testing process should begin! In every

Your software development process?1

development project regardless of the development
methodology in place, the initial requirement-
gathering phase is very important - this is where
the product is defined. So it’s essential that each
requirement is tested. Questions need to be asked
of each requirement to dispel any uncertainties
from what the customer is trying to say and also
to fill any gaps in the requirements, so that we can
gain some confidence in being able to develop the
product in line with what the customer actually
wants. Discovering additional requirements that
the customer has missed can be such a satisfying
feeling too.

Why is Requirement Analysis LEAN?

LEAN is about being smarter and more cost
effective in the project cycle to reduce waste and
optimise the processes within the said project. This
should in turn increase the quality of the product
and the customer’s satisfaction in the product. In a
time where more and more companies are trying to
be leaner, the principles of “LEAN” can definitely
be applied to the testing phases of the project in
many ways! One way is to reduce testing cost and
effort by testing as early as possible in the project
cycle, which means testing the requirements...
	 Performing requirements analysis
should clarify and dispel any assumptions in
the requirements and reduce the amount of
defects found in the product. This will enable
the developers to build software that aligns more
closely to what the customer actually wants. This
also means that there will be less time, money and
effort spent on the re-development and testing of
the software later in the project cycle, due to the

change requests that the customer would otherwise
need to submit because of the software being based
on incorrect requirements.

So how do we perform Requirements Analysis?

Testing is all about asking questions. Whether
it is software, hardware or documents being
tested, testing is about asking probing questions
of it. Turning assumptions into facts. Trying to
gain an understanding of what it does and what
it’s supposed to do, to then be able to determine
whether or not it meets the customer’s needs.
	 When the customer is collating
requirements, the main aim of testing is to make
sure that each requirement is understood (not only
by the developers and testers, but by the customer
too - they might have missed something very
important from the specification that they never
previously considered!) We also need to ensure that
each requirement is specified in such a way that
ensures we are confident the customer wants what
has in fact been written. As a basis, the tester should
try to find the answers for each of the following
“5 W” questions for each requirement: Who,
What, Where, When and Why? Additionally, when
asking these, we need to think about them in both a
positive AND negative context!
	 An example - Say the product was a
recruitment web application and one of the
requirements states: “An applicant needs to be able
to submit an application form for a job post”. We
need to ask appropriate questions based on this
requirement in order to gather more information on

Continued on page 19

What the customer specified
“We want a tree swing”

What the developers produced
“Here is your amazing tree swing”

What the customer actually wanted
“No! This is what we wanted!”

Brief
HistorY

OF
Time

a

FrenchEdition

http://jobs.softwaretestingclub.com

19Follow us at www.twitter.com/testingclub

Write something for The Testing Planet! http://www.thetestingplanet.com/submit-content/

Dan is a Software Test Analyst based in the London area, with over 7 years of experience in the
testing industry. He has a passion for Exploratory Testing and is currently focused on testing web
based applications and web sites. He is also interested in Automated Testing and Web App Secu-
rity Testing. Dan regularly uses social media sites to connect with other testers and he loves being
involved in discussions relating to anything testing and also being part of the testing community.

LinkedIn profile: http://uk.linkedin.com/in/danielashby
Twitter profile: @DanAshby04

AUTHOR PROFILE - DAN ASHBY

Continued from page 18

what the customer actually means by the statement.
We want to dispel all possible assumptions from the
requirement:

Who:
•	 Who should be able to submit/edit the

application (e.g. registered users only)?
•	 Who will receive the application form?
•	 Who should be able to view the submitted

form (e.g. in a read only format)?
•	 Who should receive any email notifica-

tions to say that an application has been
submitted?

•	 Who should NOT have access to the appli-
cation form screen to be able to submit an
application (e.g. a non registered user)?

•	 Who should NOT be able to submit this
specific application form (e.g. someone
who has already applied?)

What:
•	 What fields should be available on the ap-

plication form?
•	 What relationships should fields have with

each other (e.g. should this field auto-
populate that other field)?

•	 What about default values in the fields?
•	 What validation should be in place (e.g. any

mandatory fields or any field limitations)?
•	 What validation messages should be displayed?
•	 What buttons should be available for the user?
•	 What should the notification say?
•	 What should happen when the application

form is submitted?
•	 What should NOT happen when the ap-

plication form is submitted?

Where:
•	 Where should the new application form

be in the system (e.g. should it load im-
mediately after the user logs in)?

•	 Which screens should allow access to the
form (e.g. should a link to the application
form be available from any other screens)?

•	 Where should the link be located on these
screens?

When:
•	 When in the workflow process of the sys-

tem should the application form be avail-
able to the applicant?

•	 When in the workflow process should the
submitted application form be available to
the receiver of the application?

•	 Do certain other actions need to be per-
formed before the application form be-
comes available?

REFERENCES

1.	 Image from http://www.devsource360.com/
freedownload/free-tutorials/otherdownload/
free-download-huge-collection-of-programming-
cartoons.html

Why:
•	 Why is the new function being implemented

this way (e.g. is it consistent with other func-
tions for the product)?

•	 Is this the best way to implement this new
function?

•	 Are there any improvements that can be
made to the way that this function is sug-
gested to work (e.g. less button clicks, etc.)?

Asking questions like these should help the
customer to think about their expectations of
each requirement in a way that they may not have
done previously. They will also serve to dispel
assumptions made within the requirements and help
to identify specification gaps.

Final Thoughts

Requirements should ideally be clear and concise
with minimal uncertainty or assumptions, and
should be complete without any contradictions.
	 Testing the requirements does mean that
more time must be spent during the requirement
gathering process. However, requirements
analysis is in fact very lean as it will save money,
time, and effort later in the project cycle. If
requirements analysis is not performed, then the
cost of correction escalates for any changes that
the customer or the project team have to make due
to assumptions that have been made on ambiguous
requirements.
	 Next time you find yourself analysing
requirements, give the 5 W’s a go. I would be very
pleased to hear from you regarding the difference
that it made. □

WWW.MINISTRYOFTESTING.COM

CO-CREATING
SMARTER TESTERS

EDUCATION • COLLABORATION
EVENTS

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://www.thetestingplanet.com/submit-content/
http://uk.linkedin.com/in/danielashby
http://www.devsource360.com/freedownload/free-tutorials/otherdownload/free-download-huge-collection-of-programming-cartoons.html
http://www.devsource360.com/freedownload/free-tutorials/otherdownload/free-download-huge-collection-of-programming-cartoons.html
http://www.devsource360.com/freedownload/free-tutorials/otherdownload/free-download-huge-collection-of-programming-cartoons.html
http://www.devsource360.com/freedownload/free-tutorials/otherdownload/free-download-huge-collection-of-programming-cartoons.html
http://www.devsource360.com/freedownload/free-tutorials/otherdownload/free-download-huge-collection-of-programming-cartoons.html
http://www.ministryoftesting.com

20 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Testing for Kids - Free Download - http://bit.ly/testingforkids

The curious case of the context-
driven conference: Case notes
By Duncan Nisbet

I was hired by a client to investigate some curious
goings on over in Sweden. Rumour had it that an
infamous mob going by the name of “The Gang of
Five” was putting together a context-driven testing
conference. They claimed that it was by Testers,
for Testers. Well my client wasn’t so sure and I was
inclined to agree, so I high-tailed it over to Sweden
to see if the rumours were true…
	 The joint they chose to host this conference
was in a nice secluded spot, surrounded by water,
away from prying eyes and still only an hour way
from the airport. Camouflaged as a university
campus with a big hall for the keynotes, smaller
lecture theatres for the sessions, tutorials and en-
suite bedrooms in small blocks resembling halls
of residence; the conference could have gone
completely unnoticed by the casual passer-by, but not
by me. Following my keen nose for a story, I decided
to investigate further.
	 I had timed my arrival so the conference
was in full swing. I got me some hooch and slunk
down in a chair to monitor some chinning from Scott
Barber and other plugs.
	 This turned out to be a great start to my
investigation. I’d elicited information from a
reliable source that Scott would open proceedings
with a keynote speech alongside Michael Bolton,
Rob Sabourin and with Julian Harty bookending
the conference. Obtaining privileged information
from one of the keynote speakers early on would
substantiate whether the conference was for real or
just baloney.
	 Chow was spent with me paying close
attention to a conversation between Rob and Scott
about the current situation of testing. It appears that
some in the industry believe that testing is dead. That
sounds like another case entirely…
	 So far, this conference was living up to the
rumours – people who appeared to be Testers surrounded
me. I’d need to bump gums with more of them to see if
they were actually just ringers looking for a sucker.
	 I caught glimpses of other Testers I recognised
from reconnaissance prior to attending the conference,
including the big cheeses of the mob. I approached a
couple of them to bump guns and to test my cover. It
appears my shorts were lacking as a viable disguise, but
they promised not to bust my chops.
	 The content of the conference had a wide
range of topics for all kinds of Testers – which
should I attend? My plan was to chew gum with as
many Testers as possible to get to the bottom of case
before the conference ended.
	 Each day was kicked off with a keynote for
everyone, so no choice there. They all were nifty
and provided many leads for my investigation. With
everyone all in one room, it was a great opportunity

Duncan Nisbet is an independent PI for hire with a keen desire to learn about all things software
testing and development. No case too big, no case too small, when you need help, just call! His
case notes can be found at http://www.duncannisbet.co.uk

AUTHOR PROFILE - DUNCAN NISBET

for me to identify the ringers and grifters.
The first day was focussed on tutorials – getting
stuck in with some testing. I decided I best spread
myself thinly and commit to 2 half day sessions.
The first was “Critical Thinking for Testers” with
Michael Bolton. This guy had some great notions
about thinking on your feet, but not necessarily
going with your gut instinct. The seconds was “Now
What’s Your Plan” with Henrik Andersson and Leo
Hepis. Changing their stories more often than their
underwear, they would easily avoid being pinched!
	 The second day included 4 tracks of hour
long sessions. The choice here was overwhelming
– were they trying to hide something in plain sight?
Each session would really help debunk any baloney,
but which ones to attend? Options ranged from the
more formal topics of testing in the financial industry
and strategies for successful Systems Integration
Testing through to the more obscure hypnotic
methods of testing and the similarities between
Testers and Art Critics. What an array of topics –
how could they all be possibly related to testing?
	 I got a slant at what I felt were the more
suspicious options: “Charter My Tests”, “Testing
Hypnotically”, “Making the Case for Aesthetics” and
“Coaching Testers”. I was sure they had to be hiding
something in there and I needed clues.
As well as a packed daytime itinerary, the mob had
also put together a distracting evening schedule. This

meant more interaction; more opportunity for people
to tip their mitt and spill the beans. Options ranged
from more sessions, puzzles, gatherings in the juice
joint and guided art tours.
	 Naturally I was taking a keen interest in Alan
Richardson (you might know him by his pseudonym
Evil Tester) so I decided to attend the “Hypnosis
Explained” session as well Michael Hunter’s session
on his “You are not done yet” source of test ideas.
Aside from these sessions, I chose to mingle between
the numerous rooms to eavesdrop on some of my
marks and silently gather more intelligence for my
investigation.
	 My fear that the sponsors might try and
jeopardise my cover by putting me out on the roof
turned out to be unfounded. They were actually just
giving away free hooch accompanied by some great
loot. Very curious indeed…
	 It’s time to hang up my gumshoes and wrap
up the first part of my investigation by saying this
conference was no scam. After beating my gums
with the mob I knew they were Testers – so they
weren’t trying to pull a fast one. The joint they chose
was classy and I rated the speakers and content as
hitting on all eight!
	 Apparently the conference is being run again
next year. Was the conference this year just a ruse to
get us thinking everything was on the level? There’s
only one way to find out… □

Left: Julian Harty on open source testing / Right: Ola and his committee

Brief
HistorY

OF
Time

a

FrenchEdition

Photos by Mohinder Khosla

http://bit.ly/testingforkids
http://www.duncannisbet.co.uk

AmsterdAm rAI
5 – 8 November 2012

don’t miss the early bird discount book by 21 september

Test Lab
Real systems

and real
tools to test

in a live &
interactive

environment!

Discounts for
Delegates!

Don’t miss out on our
discounts; Early Bird,

Group, Academic
& more!

Networking
Network & make

friends with
hundreds of industry
peers. Mingle in the
Expo and at social

events!

Personalized Learning
Experience

You pick what you want to attend
out of an amazing 40 track

sessions, 6 full day tutorials, 5
half day tutorials, 5 keynotes, 1

inspirational talk & 4
interactive workshops!

Join us for the
20th EuroSTAR

conference.
See you in

Amsterdam!

w w w . e u r o s t a r c o n f e r e n c e s . c o m

Join the eurostAr Community today!
Connect with fellow testers and benefit from a variety of testing resources

to improve your skills and keep you up-to-date!

eBooks Webinars EuroSTAR TV Blog Podcasts

http://www.eurostarconferences.com

22 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Looking for Test Management software? Try out TestRails - bit.ly/stctrs

Continuous integration
for testers
By Jerry Schwartz

If you want to be lean, get to the point. Software
quality is often as much derived from operational
efficiencies as much as it is from finding bugs. If
you can build it better, and if you can construct a
better workflow, you’ll greatly increase the chances
that the software you release will be a better
experience for your end-users.
	 What is continuous integration? A
simple definition of continuous integration is
the practice of developers integrating their code
with a mainline branch on a regular and frequent
schedule. From this beginning we move along
a spectrum of increasing sophistication, where
concepts of automated builds, build on every
commit, automated deployments, unit tests, and
test automation come into play. An endpoint of
this spectrum, though not necessarily a goal, is
continuous delivery and continuous deployment,
in which everything along the spectrum has been
automated from build to test to deployment to a
production environment. In other words, automate
the building of your code so you can test and
release sooner!

Good Detective Work

Let’s move from the beginning of the spectrum
down the line to see how at each stage continuous
integration can help in a variety of testing scenarios,
from a basic black-box manual tester to an
exploratory tester to an automation engineer. All
together it helps inform and empower what can be
done. It speeds up the process and reduces technical
debt. How is this accomplished?
	 Well, let’s accept the maxim that using
source material is better than using indirect
documentation. If you were a detective, you would
prefer to examine the crime scene in person right
after it happened instead of a relying on a third-
hand account from someone who saw a photograph
taken a week after the event. This principle also
applies to software testing. Rather than getting
software built under unknown conditions days
or weeks after the developer has moved on from
what they have created, using automated CI the
latest build is always available with the changes
documented.

Getting Started

Let’s say your group just wants to dip their toe
in the water and asks you, the tester, to help.
They decide to use a CI platform such as Jenkins,
CruiseControl, MS Team Foundation Server,

Bamboo, or TeamCity. For this text we’ll choose
Jenkins, a free open-source application that
commands a large market share and supports an
active community. It can take only 10 minutes
to get it installed and you can run it on your own
machine until you learn the basics.
	 Paired with one of the developers, you
create your first build job. You set to pull from
source-control, configure it to run their build script,
and you click the shiny build now button.
	 Most likely, it didn’t work. The application
didn’t get built. There are errors in the log. You
make some changes and try again. Same result. You
dig deeper. It becomes apparent that the build script
simply wasn’t designed for this. It works great on
the developer’s machine after some tweaking and
contortions. And the developer you are paired with
may exclaim, “Oh yeah, I forgot that we need to
manually do A, B, and C each time we build.”
	 While this may seem like a setback, this is
actually a good thing. And it is where, as a tester,
you have the opportunity to make a substantial
contribution to the quality of the product. If you run
into this scenario, then there are likely significant
quality issues or pain points that are already being
experienced at the point of production release.
These may include:

•	 Only one developer can do the build, so they
better not be out sick when we need them.

•	 Software built on a developer’s machine may
not be ‘clean’.

•	 Unknown elements may be in play during
a production build resulting in a complex,
multi-step process that nobody has ever fully
documented.

Standardizing the script, simplifying and automating
the process so that it is repeatable and consistent can
directly address many of these concerns. You don’t
need to be the farmer that grows the food, but you
will be a much better chef who knows how to get the
best out of their ingredients.
	 And this first, tentative step, seemingly
small in scope, cracks the door just enough to see
the possibilities ahead. You make another attempt at
the clicking the build now button, which has been
taunting since the original failure. But you and the
developer did good work, and this time you find
success. Even now, there are tangible benefits:

•	 It’s easier for anyone on the team to kick off
the build.

•	 The build is a known quantity, meaning the
recipe and ingredients are defined to a common
understanding.

AUTHOR PROFILE - Jerry Schwartz

Jerry Schwartz is a context-driven software
tester based in Rochester, NY. He helps or-
ganize the Rochester Software Test meetup
group that promotes the development of
the local tester community. His latest area
of interest has been discovering the inter-
play between exploratory testing, automa-
tion, continuous integration, and efficient
process. Follow him on Twitter -
@jerry_schwartz

•	 We can rebuild again to a predictable outcome,
and there are no surprise dependencies as might
be found if built off a developer’s machine.

•	 There is now a history with dates and specific
information on what went into each build

•	 We may have the ability to drill down into the
source code, if the CI server is configured to do so.

If you ended here, then continued utilisation would
justify the effort spent to this point. But like a drug,
the benefits are addictive, and each step forward
is incremental enough to seem enticing; every
advancement yields some undiscovered pleasure.

Jenkins - A Day in the Life

Let’s walk through a day in the life of Jenkins. A
bit of back story first, if you hear or see the name
Hudson, know that the Jenkins open-source project
used to be under that name until sometime in early
2011. The Hudson Labs project is still active, but
essentially the entire community has moved over to
support the Jenkins project, including the creator

Continued on page 23

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/stctrs

23Follow us at www.twitter.com/testingclub

The Marketeer and The Tester - http://bit.ly/marketeertesting

Continued from page 22

 Kohsuke Kawaguchi.
	 Installation is easy. It is written in JAVA
and can be run on either Windows or Linux. From
download to finished install it should take about
ten minutes. Once installed, it is managed via a
webpage which can be initially accessed by http://
localhost:8080. To make it easy for everyone to
get to, the port can be changed in the jenkins.xml
config file (found in the root install directory) and
you can work with your IT department to give the
machine a good hostname. Speaking from personal
experience, it would also be a wise idea to consider
how to back up the machine.
	 I encourage you to poke around in the
settings for a bit, and to check out the available
plug-ins page, found by clicking Manage Jenkins,
then Manage Plugins. It lists the over 400
community contributed plugins that can be added
via a click of a button. However, a word of caution;
while most are outstanding, there are a few that may
not be stable or reliable. Go ahead and read through
the list, and install the ones that look interesting or
useful. Here’s a few that I’ve found helpful:

•	 Promoted builds: Post build options, critical if
you want to create a build pipeline.

•	 Publish over CIFS: Copy files to windows
systems.

•	 Email-ext: Customize the email notifications.
•	 Build-name-setter: Set the build number to the

software version number.
•	 Envinject: Greater control over environment

variables.
•	 Parameterized Trigger: Kickoff downstream

jobs with parameters
•	 Instant-messaging and jabber notifier: Send an

IM on build events.
•	 Subversion tagging: If you use subversion,

auto-tag the build.
•	 ViewVC: View the source code diff.
•	 Active Directory: Authentication for Jenkins,

other options available.

And there are many more. Odds are if your
development or QA group is using a tool, there is a
plugin to help integrate it into Jenkins.
	 When getting started for the very first
time, I’d recommend starting with a few basic and
obvious plugins, and creating a test job to get a feel
of how things work. This way you can separate
between what Jenkins offers as a base configuration
and the plugin enhancements.

Your First Job

Let’s get started. On the main page, click New Job.
You’ll be presented with several options, but for
now all you should do is give it a name, chose Build
a free-style software project, and click OK. Without
worrying about all of the presented options, put in
the source code repository link under the Source
Code Management section. Now under the Build
section, click Add build step and enter in one of the
options that is likely to fit your environment if you
were to run it on the command line. For example,
on a windows system you would likely choose an

Execute Windows batch command. In the text box
that is displayed, enter in the command that you or
the developer may run if building manually. This is
the first step of automation, and once this concept
sinks in, everything else will begin to make sense.
	 Probably the most useful of all the plugins
is the promoted build plugin. You can create
and control the deployment workflow with this
enhancement. For some examples, I’ve used it to
create discrete steps to deploy (copy) to the test
server and to production servers. They are also used
to activate the deployment by running additional
scripts that will change a virtual directory to point
to the new code. Additionally, they can be used

Continued on page 24

Configuring your first job

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/marketeertesting

24 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Advertising Blooper - http://bit.ly/adblooper

The Evil Tester
Question Time
Provocative advice for testers who don’t know what to do!

Listen to me
at your peril

How can I convince my managers to let me
get involved and begin testing at the require-
ment stage? - Sonz

Q1. HOLA EVIL TESTER...

Dear Sonz,

Hmmm. There are a lot of ways to do this. The
testing industry has been building up a lot of
material and books and standards and processes for
years that cover this very topic.
	 Sadly, I’m not going to encourage you
with their reasons because I think that most of
that material presents ‘testing’ as: “start spending
100% of my time on the project, formally writing
a test strategy, approach, and plan, and writing test
cases and scripts which are cross referenced to the
requirements, even though the requirements are
changing and therefore much of the ‘testing’ would
lead to waste and re-work”.
	 I’ve done this myself. I had to do a lot of
rework, and saw a lot of waste. I don’t want to see
you do that to yourself.
	 Do you think your managers hear you asking
to be allowed to do that? 	If I were your manager I
would want to know what value you would add? How
much time you think you need to spend? What risks
there are to the project if you are not involved now?
How will your involvement in this new project impact

your current project? What do you think you would
produce as a result of your involvement? What is the
risk of re-work to the products you will produce over
this time? How will it benefit the future of the project
for you to be involved?
	 But beware. If they let you in, then you
have the responsibility of demonstrating that you
can add value early in the project.
	 And if that statement has you provoked you
into a rant; “How dare he question my ability! Why
I can add value easily by...” Then verbalise your
rant to them.
	 If you can convince people that your
involvement will add value, and if they are good,
and if they are in control of the process, then they
will let you add that value. Just make sure you
avoid waste,

CUDDLY Uncle Evil

Can I make a decent living as a freelance tes-
ter? - Paul Gigi

Q2. HELLO EVIL TESTER...

Hi Paul,

If by freelance you mean, just randomly test things
and submit bug reports and hope to be paid for them
then, no, no I don’t think you can. Although if you

Learn Even More about CI

Visit http://jenkins-ci.org and browse. It has
an active community and the content is fairly
comprehensive. More detailed questions and
answers can be found by searching http://
stackoverflow.com. To get a sense of how
others use Jenkins, search Google for “Dash-
board [Jenkins]” – including the quotes. Fi-
nally, to test drive Jenkins without a full local
install, go here and launch through Java Web
Start: https://wiki.jenkins-ci.org/display/JEN-
KINS/Meet+Jenkins#MeetJenkins-TestDrive.
	 To learn more about the basics and
get a deeper understanding of continuous
integration, visit http://martinfowler.com/
articles/continuousIntegration.html. The
author, Martin Fowler, in addition to main-
taining a blog where he goes expands on
many of these concepts in elegant detail,
also wrote one of the definitive books on this
topic called “Continuous Delivery”.
	 And for even more information on
the definition of continuous delivery, visit
the following page for a great explanation
as well as a comparison with the meaning of
continuous deployment: http://continuous-
delivery.com/2010/08/continuous-delivery-
vs-continuous-deployment.

Continued from page 23

to kick off other Jenkins jobs while passing in
parameters. In this way, you can really develop
a sophisticated build pipeline with upstream and
downstream jobs.
	 A common configuration would be to
have a separate job that runs the test suites, with
examples including unit tests, Selenium automation
and eggPlant robotic GUI testing. This keeps the
build fast and gives some control over when and
which test suites get run. Having a smoke test suite
that runs quickly can be run more often than a full
regression suite, which may be run overnight.
	 All these steps and additions can be added
incrementally. The goal should be to just do what
makes sense and what makes everyone’s lives
easier. My own experience was that I built up a solid
pipeline without knowing the concept had a name; I
simply fixed a pain point, reassessed, and fixed the
next pain point. All the while I gained further insight
on what the developers were creating, which in turn
made my testing much more effective.
	 As a tester, I simply wanted to have some
influence on the builds I was getting. I wanted to
see what was in the build, to know its history, and
to get a build without waiting or fuss. Knowing
this, I could make better risk-assessments, adapt
my testing plan accordingly, and cover more testing
ground in a shorter amount of time. This is why I
believe testers should get involved in CI. It has too
much impact on software quality to cede our ground
to others or be ignored. □

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/adblooper
http://jenkins-ci.org
http://stackoverflow.com
http://stackoverflow.com
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins#MeetJenkins-TestDrive
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins#MeetJenkins-TestDrive
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment

25Follow us at www.twitter.com/testingclub

Coaching Testing Skills - http://bit.ly/coachingselena

figure out how to, then please let me know as I’d
like to follow your example.
	 If you mean, work as a contract tester
where someone hires you to test stuff on a
contractual basis, then yes, some people do manage
to make a decent living as a contractor who tests.
	 The best way I know to get started is to make
sure your skills are honed and in demand. Market
yourself effectively in your CV and create
a web presence to elevate you above most of the
people applying for work. Interview well and honestly,
add value to the workplace when you do work.
	 Fear not though. Even if you currently can’t
do the things above there are enough ineffective hiring
managers around that you can make a decent living
from creating a fake CV, lying about having a bunch
of in vogue certifications, and exaggerating your
experience. You might not enjoy the end result though.

CAREER OFFICER Evil
P.S. I’m not currently hiring.

How must a tester deal with a developer, es-
pecially when the developer carries the atti-
tude that he is always right? - Bhavya Hegde

Q3. DEAR EVIL TESTER...

Hi Bhavya,

I have similar problems. Since I too am always right
I occasionally butt heads with a misguided developer
who thinks that they are more right than me.
	 If you are 100% sure that they are not right,
and have evidence, then let the evidence speak for
itself. Of course the evidence may have to speak
to the developer’s manager since the developer
can always block out the evidence through clever
selective listening.
	 Sometimes I find it useful to compromise.
Let them win half the argument, wait till they’ve
fixed half of what you want. Then start up the
argument later and fight for the second half.
	 Sometimes I listen to the developer, and
sometimes when I do that I find myself being

Dear James,

Ah, philosophy involving an impertinent nose.

Fortunately for me, Pinocchio’s reaction is
physiological rather than philosophical. A curious
thing though. Pinocchio’s nose grows when he
experiences cognitive dissonance and, when
he knowingly and maliciously tells a lie, but...
“Unluckily, in a Marionette’s life there’s always
a BUT which is apt to spoil everything.” But, not
always, because we know that Pinocchio’s nose
does not grow when he lies if he lies because he is
too embarrassed to admit the truth.
	 Because we testers are versed in the arts of
System Thinking and Modelling, we would model
Pinocchio as a complex and probabilistic system.
With Pinocchio’s nose as one system, having a
homeostatic relationship to the system of a living
wooden doll.
	 Also, in our reading of Pinocchio we see
that he takes no pleasure in the growing of his nose
and is normally embarrassed by it, so probably I
think, his nose would not grow.
	 A counter question to you dear reader: If

If Pinocchio were to say “My nose will grow
now”, what would happen? - James Pullar

Q4. DEAR MR. E. TESTER... Dear Anon,

The ‘best’ way. I don’t know. My advice isn’t
usually ‘best’. And I don’t normally do manual
labour so this is a very tricky question to answer.
I have been a manager though. And I have seen
unbalanced teams where some testers appear to be
doing more work than others.
	 My first step is to check my observation.
Iinvestigate if the person is actually under
performing. Sometimes they are performing
differently and the observations we are making
don’t include all the work they are doing. Generally
I follow Deming’s advice and try to change the
system to help prevent such misunderstandings,
or change the system so that under-performance is
shown clearly.
	 Your question suggests that the tester in
question is a peer, rather than someone you manage.
So you may not be in full possession of the facts
relating to your peer.
	 My advice to you is to raise your concerns
to your manager, after all your lazy manager usually
has plenty of time on their hands, and it is their
responsibility to deal with your lightweight under
performing co-workers.

Yours,

Team Spirit Coach Evil □

What’s the best way to deal with a fellow tes-
ter who is not pulling his/her weight? - Anon

Q5. HI EVIL TESTER...

influenced by their argument, because sometimes
they are not wrong.
	 I’ve always liked these words by Fritz
Perls from “Gestalt Therapy Verbatim” and when I
remember them, they help me.
	 “I do my thing and you do your thing. I am
not in this world to live up to your expectations,
And you are not in this world to live up to mine.
You are you, and I am I, and if by chance we find
each other, it’s beautiful. If not, it can’t be helped.”

Hope that helps,

TEAM DYNAMICS THERAPIST Evil

Pinocchio were an experienced test manager and he
wrote in a test strategy “Testing will demonstrate
that the system is fit for purpose to go live”. Would
his nose grow?

Yours, physiologically incapable of performing
philosophy,

Uncle E

a community for software testers

WWW.SOFTWARETESTINGCLUB.COM

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/coachingselena
http://www.softwaretestingclub.com

26 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

A Testing Toolkit - http://bit.ly/testtoolkit

AST are working with SummerQAmp to create
ideas and training materials for their initiative to
train youth in IT skills. Support and suggestions
are welcome from the AST team.

http://www.associationforsoftwaretesting.
org/2012/06/12/update-on-summerqamp/

Nielsen comes under fire and responds to
critics on his ‘backward mobile’ recommendations.

http://www.netmagazine.com/interviews/nielsen-
responds-mobile-criticism

Sharness is a portable shell library to
write, run, and analyze automated tests for Unix
programs, version 2.2 is out.

Feedback to @mlafeldt is welcome!

New Selenium Introduction course intro-
duced by Edgewords.

Edgewords, test tools training specialist, has
announced the dates of its first Selenium
Introduction course. The first public course is
being held in London on 2nd and 3rd July; this
is a two day course that has been developed by
one of our industry’s leading Selenium experts;
it focusses on real world problem solving and
delivers practical knowledge.

Visit - http://www.edgewords.co.uk/

ISO 29119 - There’s talk of a new definite standard
for software testing. What are your thoughts about it?

http://www.softwaretestingclub.com/forum/
topics/iso-29119-the-new-international-software-
testing-standard-what

PotsLightning - A Low-Budget, Non-
Profit, Free-Entry Peer Event.

In Germany on 17th of November 2012. Deadlines
for contributions are 31st of June 2012.

The theme is:
•	 The role of the tester in agile;
•	 or why do testers have their own conference

and do not go to general agile conferences
•	 Training and coaching
•	 Transition to agile – approaches, obstacles,

practical experiences?
•	 Agile pitfalls, common reason for “failures”;

lessons learned, etc.

http://gate-workshop.de/potslightning/

SOASTA’S CloudTest now runs on the HP
Cloud! Cloud Testing is clearly validated as the new
approach to realistic scale web and mobile testing
using cloud with this news. This enables even more
distributed load for users of the very popular Cloud-
Test platform so testing at full scale is fast and easy.

http://www.businesswire.com/news/
home/20120510005429/en/SOASTA-Brings-
CloudTest-HP-Cloud-Services

An Interview with James Bach by Code-
Centric available online at http://www.codecen-
tric.nl/2012/04/27/james-bach-interview/

30 - a Key Number for Test Effectiveness - A paper
by Kalistick.

30% of tests performed are ineffective
30% of tests cover 65% of regression risks
30% of tests are redundant

Download - http://www.kalistick.com/public/
white_paper/Kalistick-white-pape-2012-30_a_
key_number_for_test_effectiveness.pdf

Continued on page 27

BUGS IN
THE WILD
“Technical issues” with banking systems pre-
vents bank accounts from being updated and
causes days of misery for millions of Natwest

and RBS customers.

http://www.telegraph.co.uk/finance/person-
alfinance/consumertips/banking/9346893/
Millions-of-Natwest-and-RBS-customers-left-

high-and-dry.html

Leading comparison websites are still letting
down disabled and the older generation.

Their websites are barely scraping the mini-
mum accessibility requirements.

http://www.guardian.co.uk/money/2012/
apr/17/price-comparison-sites-disabled-old-

er-people-struggle

NEWS IN
BRIEF

A ROUND-UP OF STORIES
SUBMITTED BY THE COMMUNITY.
Submit your newS here - http://www.thetestingplanet.com/submit-content/

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/testtoolkit
http://www.associationforsoftwaretesting.org/2012/06/12/update-on-summerqamp/
http://www.associationforsoftwaretesting.org/2012/06/12/update-on-summerqamp/
http://www.netmagazine.com/interviews/nielsen-responds-mobile-criticism
http://www.netmagazine.com/interviews/nielsen-responds-mobile-criticism
 http://www.edgewords.co.uk/
http://www.softwaretestingclub.com/forum/topics/iso-29119-the-new-international-software-testing-standard-what
http://www.softwaretestingclub.com/forum/topics/iso-29119-the-new-international-software-testing-standard-what
http://www.softwaretestingclub.com/forum/topics/iso-29119-the-new-international-software-testing-standard-what
http://gate-workshop.de/potslightning/
http://www.businesswire.com/news/home/20120510005429/en/SOASTA-Brings-CloudTest-HP-Cloud-Services
http://www.businesswire.com/news/home/20120510005429/en/SOASTA-Brings-CloudTest-HP-Cloud-Services
http://www.businesswire.com/news/home/20120510005429/en/SOASTA-Brings-CloudTest-HP-Cloud-Services
http://www.codecentric.nl/2012/04/27/james-bach-interview/
http://www.codecentric.nl/2012/04/27/james-bach-interview/
http://www.kalistick.com/public/white_paper/Kalistick-white-pape-2012-30_a_key_number_for_test_effectiveness.pdf
http://www.kalistick.com/public/white_paper/Kalistick-white-pape-2012-30_a_key_number_for_test_effectiveness.pdf
http://www.kalistick.com/public/white_paper/Kalistick-white-pape-2012-30_a_key_number_for_test_effectiveness.pdf
http://www.telegraph.co.uk/finance/personalfinance/consumertips/banking/9346893/Millions-of-Natwest-and-RBS-customers-left-high-and-dry.html
http://www.telegraph.co.uk/finance/personalfinance/consumertips/banking/9346893/Millions-of-Natwest-and-RBS-customers-left-high-and-dry.html
http://www.telegraph.co.uk/finance/personalfinance/consumertips/banking/9346893/Millions-of-Natwest-and-RBS-customers-left-high-and-dry.html
http://www.telegraph.co.uk/finance/personalfinance/consumertips/banking/9346893/Millions-of-Natwest-and-RBS-customers-left-high-and-dry.html
http://www.guardian.co.uk/money/2012/apr/17/price-comparison-sites-disabled-older-people-struggle
http://www.guardian.co.uk/money/2012/apr/17/price-comparison-sites-disabled-older-people-struggle
http://www.guardian.co.uk/money/2012/apr/17/price-comparison-sites-disabled-older-people-struggle
http://www.thetestingplanet.com/submit-content/

27Follow us at www.twitter.com/testingclub

Meet other testers on Software Testing Club - www.softwaretestingclub.com

Continued from page 26

Touchstone Technology Training has an-
nounced its Software Quality Assurance and Agile
Development training courses in Denver.

Touchstone Technology Training offers compre-
hensive Software QA training and Agile Software
Development courses to suit the needs of both
individuals and organizations alike. The courses are
designed to provide the foundation and skills to
evaluate, plan, and execute effectively on Software
Quality Assurance and Test activities.

Headquartered in Denver, Colorado, Touchstone
Technology Training (http://www.touchstone-
technologytraining.com) has conducted training
for software quality assurance professionals and
technology leaders throughout the U.S.

SmartBear has just introduced the first
commercially available version of its (once an

Eviware product prior to acquisition in July ‘11)
almost 2-year old Open Source API/Web Services
load testing tool, loadUI, now offered as loadUI Pro.
loadUI Pro has server monitoring. Server monitor-
ing enables testers to easily find the solution to the
performance issues loadUI finds in their APIs. loadUI
Pro also can create real-time graphs of API perfor-
mance and server status, and automatically saves
hundreds of data points for later analysis, post test.

Full news - http://smartbear.com/news/news-
releases/SmartBear-Advances-Load-Testing-for-
Web-Services-a

Feedback Sought on New Open Source
Web Test Tool

Adrian Dorache recently launched a new open source
web testing tool and would love your feedback!

You can download it from - http://open-twebst.
codecentrix.com/ □

By Jim Holmes

Lean’s principles of focusing on high-value, just-
in time minimalism has gradually been spreading
through the software construction domain. Lean’s
not just for the development aspect of our software
projects, though. I’m a firm believer there’s a
critical need for teams working with automated
tests to dive in to the Lean mindset when they’re
thinking about their automated suites.
	 Automation brings us tremendous value
for the software projects we work on. We can
increase that value by bringing some Lean ideas to
what we test, how we test, and how we maintain
our automation. When we lose sight of Lean
principles, our automation suites can become risky,
burdensome drags on our teams’ productivity..

What We Test

Focusing your effort on the highest value work
items has always been my largest takeaway from
Lean. Why spend any time building something few
people ever use, or that isn’t mission-critical?
	 I live and breathe that same idea with
the approach I use for automated testing on the
teams I work with, especially when it comes to
test automation at the UI level. UI automation is
difficult to create, time-consuming to run, and
can be even more of a time cost for maintaining

it. If that’s the case, it’s critical to spend our time
automating only tests that are high value.
	 For example, I’m a big fan of ensuring we
get automation around the “Show Me The Money”
test cases (phrase courtesy of Adam Goucher).
By this I mean focusing on use cases that earn the
company revenue or expose the organisation to
liability risk. Automating tests around shopping
cart use cases is one situation. Another might be
wrapping critical security features with automation
to ensure you’re not inadvertently injecting
regressions into areas protecting users’ privacy
information, or sensitive organizational data.
	 Lean test cases aren’t just about what to
focus writing automation for; it’s every bit as much
understanding what not to automate. Time and time
again I see teams trying to create automation around
test cases that are time intensive, brittle, and better
left to manual validation.
	 A great example of this would be
comparing visual look and feel across different
browser types. Trying to write this sort of
automation is, quite frankly, a waste of effort in
my experience. The same argument can be made
for many things relating to look and feel. It’s one
thing to validate that a specific image is loaded in
a specific element; it’s another to try and validate
element alignment and styling through automation.

How We Write Our Tests

Keeping Your
Automated Tests Lean

TESTING
TIPS

Do you do web testing?
Perhaps you should understand

how browsers work -
http://www.html5rocks.com/en/tutorials/

internals/howbrowserswork/

About 8% of the male population have
some kind of colour blindness.

Have you considered how colourblindness
can effect the user experience?

http://wearecolorblind.com/

Like to think visually?
Then perhaps try MindMapping.

Here are some testing related MindMaps -
http://pinterest.com/rosiesherry/testing-

mindmaps/

Would you like to learn to code?
Check out Codecademy -

http://www.codecademy.com/

Lean’s minimalistic philosophy really appeals to me.
I closely associate this with the “YAGNI” or “You
Ain’t Gonna Need It” outlook for building software.
Lean and YAGNI both push you to avoid building
things you THINK you might need later and instead
focus on things you KNOW you need right now.
	 Using this same approach with automated
tests helps us ensure we’re only doing work that’s
of the highest value. Focusing on high value test
cases makes us write tests that validate business-
critical features like realising revenue or security
infrastructure if your system holds information

Continued on page 28

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
www.softwaretestingclub.com
http://smartbear.com/news/news-releases/SmartBear-Advances-Load-Testing-for-Web-Services-a
http://smartbear.com/news/news-releases/SmartBear-Advances-Load-Testing-for-Web-Services-a
http://smartbear.com/news/news-releases/SmartBear-Advances-Load-Testing-for-Web-Services-a
http://open-twebst.codecentrix.com/
http://open-twebst.codecentrix.com/
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
http://wearecolorblind.com/
http://pinterest.com/rosiesherry/testing-mindmaps/
http://pinterest.com/rosiesherry/testing-mindmaps/
http://www.codecademy.com/

28 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

Bug I wouldn’t report - http://bit.ly/noreport

Continued from page 27

covered by various regulatory enforcement policies.
(Think financials covered by SOX compliance, or
patient data covered by HIPA .)
	 If we’re thinking Lean, then we don’t
spend time on tests that aren’t a good target for
automation such as testing styling, layout, or cross-
browser rendering equality. Those tests are usually
extremely difficult to write and worse to maintain
over time. Instead, leave those sorts of tests for
manual validation.
	 Lean in test automation isn’t just about the
large-scale business value; it’s also about the small
details of the tests themselves. For example, if you’re
using the page object pattern to layout your tests (and
you should be!), then there’s no need to go overboard
when starting to build out your test suite.
	 Do not jump in to creating a new page object
for every page in your system. Build page objects
only for the high-value tests you’re working on right
now. Do not create properties or accessors for every
field and element on the page you’re working with.
Instead, focus on mapping out only the services and
elements you need for the current test.

Staying Lean

In my view, Lean focuses not just on building high-
value features, but also on maintaining only high-
value features in your system. If a feature is being
used by only a fraction of your user base, then that
feature is a ripe candidate for removal. Why spend
the time and energy to continue maintaining that
feature when you could simply prune it, and invest
that effort elsewhere in your system?
	 The same concept applies to our automation
test suites. Test automation, particularly at the
UI level and somewhat less so at integration
and unit levels, can be long running and
somewhat expensive to maintain. Why not be
just as aggressive about pruning out low-value or
expensive-to-maintain, tetchy automation?
	 At my previous job I was responsible
for a team that was running over 9,000 tests in
approximately 900 Selenium fixtures. That team

AUTHOR PROFILE - Jim Holmes

Father. Husband. Geek. Veteran. Around 25
years IT experience. Co-author of “Windows
Developer Power Tools.” Coffee Roaster.
MVP for C#. Chief Cat Herder of the Code-
Mash Conference. Diabetic. Runner. Liked
5th grade so much he did it twice. One-time
setter, middle blocker, and weakside hitter.
Blogger (http://FrazzledDad.com). Evange-
list for Telerik’s Test Studio, an awesome set
of tools to help teams deliver better soft-
ware. Big fan of naps.

actually wrote close to 15,000 Selenium/WebDriver
tests over the space of two years; however, we
were extremely aggressive about monitoring our
test coverage and dropping fixtures or tests that
had become outdated or less valuable. This helped
ensure we were testing the right things, and not
wasting time maintaining low-value tests.
	 Migration of tests is another topic that’s a
great example of keeping Lean values close to your
heart. Just because your team or organisation finds
a new test tool or framework doesn’t mean you
should jump in to rewriting all your existing tests
with the new toolset. Migrating entire test suites is
rarely a good use of time and effort. Instead, focus
only on high-value tests.
	 Your existing tests are (hopefully!)
providing great value to your projects. Why touch
them? Leave them exactly as they are, and focus
on writing new tests in your new toolset! If one of
the tests in the older toolset becomes outdated, drop
it from that environment. If one of the old tests is
valuable, but breaks, re-write it in your new toolset.

Lean Isn’t Just for Systems

Lean helps us focus on delivering great value to our
customers, regardless of who they are. Minimalism,
clarity, and reducing waste are huge benefits of a
Lean mindset. Why wouldn’t we want to apply those
same ideas to our test automation software too? □

Automation suites can become a burden on team productivity

NEW
BOOKS

The Software
Minefield
By Mike Talks

http://leanpub.com/The-
SoftwareMinefield

How Google
Tests Software
By James A. Whittaker,
Jason Arbon and Jeff Carollo

http://amzn.to/hgtsbook

Experiences of Test
Automation
By Dorothy Graham and
Mark Fewster

http://amzn.to/eotabook

The Lean Startup
By Eric Ries

http://amzn.to/
leanstartupttp

Always a Duck
By Elisabeth Hendrickson

http://leanpub.com/al-
waysaduck

Brief
HistorY

OF
Time

a

FrenchEdition

Image: CC Licensing by Graeme Newcombe

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/noreport
http://FrazzledDad.com
http://leanpub.com/TheSoftwareMinefield
http://leanpub.com/TheSoftwareMinefield
http://amzn.to/hgtsbook
http://amzn.to/eotabook
http://amzn.to/leanstartupttp
http://amzn.to/leanstartupttp
http://leanpub.com/alwaysaduck
http://leanpub.com/alwaysaduck

29Follow us at www.twitter.com/testingclub

A picture is worth a 1000 words - http://bit.ly/1000picture

BUG REPORTING
MINDMAP

Bug Reporting

Replicate

Isolate

Maximise

Who cares?

Is it easy to replicate from

information provided?

Not reproducible?

Investigate exact reasons for the bug

Remove any unnecessary steps

What is the most direct path to

reproducing the bug?

What's the worst

failure you can

reproduce?

How is the bug

relevant to the...

Stakeholders?

Community?

Press?

Features of a good bug report

Sell it!

User?

Software Team

Why would they

want to fix the bug?

Be prepared for objections

It looks bad

It's relatively easy to find
It could be easy to fix

It will affect many people

Embarrassing

Bad community and press coverage

Reduces company reputation

'Management' would want it fixed

They trust your ability

and judgement

Unable to reproduce

Complicated to reproduce

Bug report isn't clear

Cost is too much to fix

It doesn't appear to effect customers

Who cares?

 It's not important

Does management

really care about

this?Does the tester hold trust?

How serious could it be?

Generalise

How does it affect

users easily?

Try follow up

tests, what

happens if...

Change your test

behaviour

Configure

software

settings

Change your test

environment

Can you turn it into a

spectacular bug?

Is it an old bug?

Can be time

consuming and costly

Simplify

One error per bug

Add additional notes

Financial

Save money

Costs the business more money

Contents

How to reproduce

Clear steps

Neutral tone

Keep it simple

Attach

Data

Screenshots

Videos

Scripts

Test Environment

Version / Build Number

Writing matters
Sell bugs

Headers / Titles matter Use searchable

terms and

keywords

Consequences...

Importance....

Gain Tester Credibility
Be professional

Become an expert

Don't waste anyone's time

Create your best

bug reports every

time

Make friends

Make sure it is not

a duplicate

Techniques

Log as much

info as

possible

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/1000picture

30 July 2012 | www.thetestingplanet.com | Use #testingclub hashtag

An eight level model for exploratory testing - http://bit.ly/8layers

PRACTITEST
Practitest is a SaaS-based Test Management
Solution that supports the entire QA lifecycle,
including requirement & issue tracking.
www.practitest.com

GEMINI
Gemini brings versatile test management,
bug and issue tracking to your team. Sign up
to our cloud-based offering or install locally.
Join the new generation in software project
management with Gemini – no hidden extras
or crazy pricing. 3 Users FREE – No Gimmicks –
Full Edition. www.geminiplatform.com

TESTRAIL
TestRail – Test Case Management Software for
QA and Development Teams. Comprehensive
web-based test case management software
to efficiently manage, track and organize your
software testing efforts. www.gurock.com/testrail

BUG DIGGER
BugDigger removes the hard work from web site
bug reporting. With the help of a browser add-on,
automatically captures and uploads: – web page
screendump optionally annotated using built-in
editor, – environment details, and – web site usage
history. Even busy or inexpert testers can create
useful bug reports instantly. BugDigger integrates
with JIRA, Basecamp, Pivotal Tracker, FogBugz,
Unfuddle, Redmine and others. www.bugdigger.com

TESTLODGE
TestLodge is an online test case management tool that
allows you to manage your test plans, requirements,
test cases and test runs with ease along with issue
tracker integration. www.testlodge.com

LOADSTORM
LoadStorm – The lowest cost and easiest cloud
load testing tool. Free account for 25 users. Test
up to 100k vusers. Real-time graphs with key
performance metrics. www.loadstorm.com

TESTOPTIMAL
TestOptimal – Model-based data-driven test design
and test automation to improve test coverage,
enable rapid response to changes and reduce test
maintenance cost. www.testoptimal.com

XSTUDIO
XStudio is a free ALM/test management solution
allowing to manage requirements/specifications,
scrum projects, Automated/manual tests,
campaigns and defects. An LGPL SDK is also included
to interface with proprietary tests. www.xqual.com

TESTPLANT
TestPlant develops eggPlant the leading user
interface test tool that creates an abstraction of a
GUI for any device type, enabling automation of
screen-based testing through ‘search and compare’.
Download now. www.testplant.com

TEST TOOLS & SOFTWARE

SOFTWARE TESTING TRAINING

SKILLS MATTER
Skills Matter supports a community of 35,000
Software Professionals with the learning and
sharing of skills to write better software. Find
hundreds of meetups, talks, conferences,
skillscasts and workshops on our website:
www.skillsmatter.com

PARASOFT SOATEST
Parasoft SOAtest automates web application testing,
message/protocol testing, cloud testing and security
testing. Parasoft SOAtest and Parasoft Load Test
(packaged together) ensure secure, reliable, compliant
business processes and seamlessly integrate with
Parasoft language products (e.g., Parasoft Jtest) to

THE TESTING PLANET DIRECTORY - GET LISTED WITH THESE AWESOME COMPANIES - thetestingplanet.com/directory

THE TESTING PLANET DIRECTORY - GET LISTED WITH THESE AWESOME COMPANIES - thetestingplanet.com/directory

REQTEST
ReQtest is an easy to use bug tracking software,
available in the cloud 24/7. It empowers teams
to work more efficiently and gives decision
makers meaningful data on progress made.
ReQtest includes a requirement management
module which is tightly integrated with the bug
tracking features. www.reqtest.com

TESTWAVE
TestWave is a next generation test management
tool implemented as Software as a Service (SaaS).
It can be deployed instantly and you only pay for
what you use. TestWave is designed for both Test
Managers and Testers, and provides requirements,
test planning, test execution and defect tracking.
Intuitive graphs report testing data in real time.
Reduce your costs and unleash the power of SaaS
with the cloud’s first fully extensible test
management tool. Learn more and sign up for a
free 30 day evaluation: www.testwave.co.uk

help teams prevent and detect application-layer
defects from the start of the SDLC. Moreover,
Parasoft SOAtest integrates with Parasoft Virtualize
to provide comprehensive access to traditionally
difficult or expensive to access development and
test environments. Parasoft SOAtest provides
an integrated solution for: End-to-end testing,
Environment management, Quality governance,
Process visibility and control. www.parasoft.com

KALISTICK
Kalistick gives testers a new solution to design
efficient test strategies focusing on business
risks. Our unique technology analyzes test cases
footprints and functional changes to select the most
relevant test cases. Discover how to move one step
ahead in testing efficiency. www.kalistick.com

Brief
HistorY

OF
Time

a

FrenchEdition

http://bit.ly/8layers
http://bit.ly/stcpractitest
http://www.geminiplatform.com/
http://bit.ly/stctrs
http://bugdigger.com/
http://www.testlodge.com/
http://loadstorm.com/
http://testoptimal.com/
http://www.xqual.com/
http://www.testplant.com/
www.skillsmatter.com
http://www.thetestingplanet.com/directory
http://www.thetestingplanet.com/directory
http://www.reqtest.com/web/landing/g.aspx?v=stc_tp&g=/adv/stc_tp/g/1d
http://www.testwave.co.uk
http://www.parasoft.com/jsp/products/soatest.jsp
http://www.kalistick.com

31Follow us at www.twitter.com/testingclub

The Evil Tester’s Guide to Evil - http://bit.ly/eviltester

INDEPENDENT TESTERS, TRAINERS
AND CONSULTANTS

ANNE-MARIE CHARRETT
Anne-Marie Charrett is a testing coach and
trainer with a passion for helping testers
discover their testing strengths and become
the testers they aspire to be. She offers a blend
of online coaching and training on Exploratory
Testing, Career Management and motivating
testers. Anne-Marie is currently working on a
coaching testers book with James Bach, due
out late next year. www.testingtimes.com.au

COMMUNITIES, CONFERENCES
AND NEWS

TEST HATS
Test Hats are an independent software testing
services provider, with offices in the UK and
Spain. We provide a full range of testing services
including System, Performance and Security
testing along with specialised Consultancy and
Training. For near-shore testing our Test Lab
is fully equipped with a range of desktop and
mobile platforms, testing software and tools,
allowing us to provide a quality service at a
competitive price. Visit our website to learn
more about Test Hats and our services. Get in
touch today to talk about how we can help test
your projects. www.testhats.com

REVOLUTION IT
Revolution IT is the leading Quality Assurance

THE TEST PEOPLE
The Test People delivers the best, most innovative,
highly technical and competitive performance
engineering and test service available today.
Based upon our extensive experience, TTP can

MOOLYA
Moolya is a new generation software testing
services company headquartered in Bangalore,
India founded in 2010. Our focus is to help
business move forward. We believe in helping
our clients to make great products that wow
their customers. That’s when we win. We are
context driven testers highly skilled at exploratory
testing, SBTM, small “a” agile testing and check
automation. How can we help you win smiles on
your customer’s face? sales@moolya.com /
www.moolya.com

ORIGINAL SOFTWARE
Original Software - With a world class record of
innovation, Original Software offers a solution
focused completely on the goal of effective quality
management. By embracing the full spectrum of
Application Quality Management across a wide
range of applications and environments, products
include a quality management platform, dynamic
manual testing, robust test automation and test
data management. More than 400 organisations
operating in over 30 countries use Original
Software solutions. Amongst its customers are
Coca-Cola, Unilever, Barclays Bank, HSBC, FedEx,
Pfizer, DHL and many others. Visit www.origsoft.
com/solutions for more information.

and Testing, management consulting firm in Asia
Pacific. We help our clients deliver IT projects and
have core offerings across Project Management,
Requirements Management and Application
Testing. We have over 250 staff and offices in
Melbourne, Sydney, Brisbane, Canberra, Adelaide
and Singapore. Our offering includes delivery
consulting, methodologies, tool solutions and
training. We have strategic partnerships with HP
software, IBM Rational, Oracle, Agile Academy and
SAP. With HP we have been the leading HP Software
Platinum Partner for 4 years running and the leading
reseller, 1st line technical support, training and
services partner. www.revolutionit.com.au

EUROSTAR
EuroSTAR is Europe’s premier software testing event
and will be taking place this year in Manchester, UK
from November 21 – November 24. At EuroSTAR
2011, the leading names in testing will meet for
an intensive 3-4 days of learning, networking,
discussion…and a few extracurricular activities!
Attendees can choose from numerous thought-
provoking presentations, intensive tutorials,
interactive sessions and inspirational keynotes. Plus,
visit Europe’s largest software testing exhibition
which will be showcasing the leading companies
in the industry. The EuroSTAR Team hopes to see
you in Manchester later this year for what will be a
fantastic, fun and innovative conference!
www.eurostarconferences.com □

THE TESTING PLANET DIRECTORY - GET LISTED WITH THESE AWESOME COMPANIES - thetestingplanet.com/directory

THE TESTING PLANET DIRECTORY - GET LISTED WITH THESE AWESOME COMPANIES - thetestingplanet.com/directory

deliver tailored services to address all aspects of
the functional and non-functional test lifecycle,
including highly specialised performance
engineering and test automation services
including automated build and continuous
integration solutions. TTP are at the forefront of
utilising the cloud for test and load environments,
with significant experience in open source and
the major commercial toolsets whilst also coming
armed with our own performance and automation
frameworks. www.thetestpeople.com

ELECTROMIND
ElectroMind offers training, consulting, coaching
and mentoring services to the software testing
community. Through strong relationships with
world-class testing experts, built up over several
years, ElectroMind delivers niche training products,
test process improvement consultancy and
innovative people skills development programmes.
Our consultants are comfortable using both
traditional and Agile testing methodologies with
experience in several industry sectors including
financial services, telecommunications, online retail,
travel, mobile and digital media. Through strategic
partners, ElectroMind can offer performance
engineering services including load and stress testing.
Our overall philosophy is simple. We believe your
software quality matters. www.electromind.com

SOFTWARE TESTING SOLUTIONS

Brief
HistorY

OF
Time

a

FrenchEdition

www.twitter.com/testingclub
http://bit.ly/eviltester
http://testingtimes.com.au/
http://www.testhats.com/
http://www.moolya.com/
http://www.origsoft.com/solutions/
http://www.origsoft.com/solutions/
http://www.revolutionit.com.au/
http://www.eurostarconferences.com/
http://www.thetestingplanet.com/directory
http://www.thetestingplanet.com/directory
http://thetestpeople.com/
http://www.electromind.com/

http://www.magentys.co.uk/

